Formula units in 450 g of
is 1.93 × 10²⁴ formula units.
<u>Explanation:</u>
First we have to find the number of moles in the given mass by dividing the mass by its molar mass as,

Now, we have to multiply the number of moles of Na₂SO₄ by the Avogadro's number, 6.022 × 10²³ formula units/mol, so we will get the number of formula units present in the given mass of the compound.
3.2 mol × 6.022 × 10²³ = 1.93 × 10²⁴ formula units.
So, 1.93 × 10²⁴ formula units is present in 450g of Na₂SO₄.
Answer:
in a laboratory
Explanation:
A controlled experiment refers to the one where everything is an experiment except a single variable is held constant. A collection of information is typically taken as a control group, which is generally the ordinary state, and another group is analyzed( such as chemical reaction as per the question) in which all conditions are similar to the control group except for the variable under examination. The main benefit of a controlled experiment is that confusion over the accuracy of the results can be eliminated more easily.
Answer:
0.185M sulfuric acid
Explanation:
Based on the reaction:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
<em>1 mole of sulfuric acid reacts with 2 moles of KOH</em>
Initial moles of H₂SO₄ and KOH are:
H₂SO₄: 0.750L ₓ (0.470mol / L) = <em>0.3525 moles of H₂SO₄</em>
KOH: 0.700L ₓ (0.240mol / L) = <em>0.168 moles of KOH</em>
The moles of sulfuric acis that react with KOH are:
0.168mol KOH ₓ (1 mole H₂SO₄ / 2 moles KOH) = 0.0840 moles of sulfuric acid.
Thus, moles that remain are:
0.3525moles - 0.0840 moles = <em>0.2685 moles of sulfuric acid remains</em>
As total volume is 0.700L + 0.750L = 1.450L, concentration is:
0.2685mol / 1.450L = <em>0.185M sulfuric acid</em>
1) HOBr stands for hypobromous acid. On reacting with water, products formed are OBr- and H3O+. Following reaction occurs during this process.
<span> HOBr + H2O </span>⇄<span> OBr- + H3O+
2) HOBr is a weak acid and have a lower value of dissociation constant (Ka ~ </span><span>2.3 X 10^–9). Hence, </span><span> large number of undissociated HOBr molecules are left in solution, when the reaction is completed/reaches equilibrium.</span>