This is possible because of the emulsifying properties present in soap. This property is caused by the hydrophilic end and hydrophobic end of a soap molecule. Grease is able to be dissolved in the water because it is attracted to the hydrophobic end of the soap molecule.
2 identical daughter cells
Answer:
3m/s²
Explanation:
Given parameters:
Mass of object = 3.2kg
Force to the right = 16.3N
Force to the left = 6.7N
Unknown:
Acceleration of the object = ?
Solution:
To solve this problem, we use newtons second law of motion;
Net force = mass x acceleration
Net force on object = Force to the right - Force to the left
Net force = 16.3N - 6.7N = 9.6N
So;
9.6 = 3.2 x a
a =
= 3m/s²
<span>The Law of Conservation of Mass simply states
that the total amount of mass should not change in a chemical reaction that is
isolated (no other objects can enter the reaction). The total mass of the
reactants must be equal to the total mass of the products. Thus, t</span>he correct estimate of
the amount of oxygen used in the interaction is the difference between 133
g and 29 g.
The combustion reaction of octane is as follow,
C₈H₁₈ + 25/2 O₂ → 8 CO₂ + 9 H₂O
According to balance equation,
8 moles of CO₂ are released when = 114.23 g (1 mole) Octane is reacted
So,
6.20 moles of CO₂ will release when = X g of Octane is reacted
Solving for X,
X = (114.23 g × 6.20 mol) ÷ 8 mol
X = 88.52 g of Octane
Result:
88.52 g of Octane is needed to release 6.20 mol CO₂.