1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
2 years ago
9

Parallel lines, transversals

Mathematics
1 answer:
swat322 years ago
5 0
The answer is what ever the answer is 28,394
You might be interested in
A random sample of n = 36 scores is selected from a population. Which of the following distributions definitely will be normal?
Alika [10]

Answer:

The distribution of sample means will form a normal distribution

Step-by-step explanation:

4 0
3 years ago
36) The speed of a boat in still water is 5km/hr. If the speed of the boat against the stream is 3
Radda [10]

Answer:

2km/hr

Step-by-step explanation:

Given the following

Speed of boat in water = 5km/hr

Speed of boat against stream = 3km/hr

Since the speed of boat is going against that of the stream, hence, the speed of the stream will be the difference between the speed of boat and that when the boat is against the stream

Speed of stream = 5km/hr - 3km/hr

Speed of stream = 2km/hr

hence the required speed of stream is 2km/hr

5 0
3 years ago
Help!!! Will mark brainliest !!
fenix001 [56]

Answer: 2

Step-by-step explanation: if the rectangles are four then the square is 2

3 0
4 years ago
PLEASE HELP MEEEEEEEEEEEEEEEEEEEEEEEE!!!!!!!!!!!!!!! I HAVE TO TURN IT IN REALLY SOON!!!!!!!!!
umka2103 [35]
Ratio from BC to FG is 1:2 so AD:EH would also be 1:2. 7*2 = Your Answer (14)
8 0
3 years ago
Consider the following. (See attachment)
Furkat [3]

Answer:

Area: 16

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Integrals - Area under the curve

Trig Integration

Integration Rule [Fundamental Theorem of Calculus 1]:                                        \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                             \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle f(x) = 8sin(x) + sin(8x)

\displaystyle y = 0

Bounds of Integration: 0 ≤ x ≤ π

<u>Step 2: Find Area Pt. 1</u>

  1. Set up integral:                                                                                                 \displaystyle A = \int\limits^{\pi}_0 {[8sin(x) + sin(8x)]} \, dx
  2. Rewrite integral [Integration Property - Addition/Subtraction]:                     \displaystyle A = \int\limits^{\pi}_0 {8sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  3. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:                \displaystyle A = 8\int\limits^{\pi}_0 {sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  4. [1st Integral] Integrate [Trig Integration]:                                                         \displaystyle A = 8[-cos(x)] \bigg| \limits^{\pi}_0 +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  5. [1st Integral] Evaluate [Integration Rule - FTC 1]:                                            \displaystyle A = 8(2) +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  6. Multiply:                                                                                                              \displaystyle A = 16 + \int\limits^{\pi}_0 {sin(8x)} \, dx

<u>Step 3: Identify Variables</u>

<em>Identify variables for u-substitution.</em>

u = 8x

du = 8dx

<u>Step 4: Find Area Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                     \displaystyle A = 16 + \frac{1}{8}\int\limits^{\pi}_0 {8sin(8x)} \, dx
  2. [Integral] U-Substitution:                                                                                  \displaystyle A = 16 + \frac{1}{8}\int\limits^{8\pi}_0 {sin(u)} \, du
  3. [Integral] Integrate [Trig Integration]:                                                              \displaystyle A = 16 + \frac{1}{8}[-cos(u)] \bigg| \limits^{8\pi}_0
  4. [Integral] Evaluate [Integration Rule - FTC 1]:                                                  \displaystyle A = 16 + \frac{1}{8}(0)
  5. Simplify:                                                                                                             \displaystyle A = 16

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration - Area under the curve

Book: College Calculus 10e

4 0
3 years ago
Other questions:
  • Which pair of angles are adjacent angles?
    5·1 answer
  • What number has a negative absolute value?
    11·1 answer
  • What is the square root of 24
    8·1 answer
  • Which is the most specific taxonomic level in the classification system above?
    14·1 answer
  • You drive to Atlanta. You travel 4 hours at a
    5·1 answer
  • A club is making posters to raise money. The printing company charges a base fee of $60 and $2 per poster. How many posters can
    13·2 answers
  • The product of 5 and the cube of x, increase by the difference of 6 and x3
    8·1 answer
  • which is the correct simplified version of the expression shown after distrubuting and combining like terms? 1/3(9x-15)+2x​
    10·1 answer
  • If f(x) = 2x and g(x) = x²-1, which statement is true?
    10·1 answer
  • Solve for x.<br><br> 5x/−6 = −40/3<br><br> Enter your answer in the box
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!