Some basic formulas involving triangles
\ a^2 = b^2 + c^2 - 2bc \textrm{ cos } \alphaa 2 =b 2+2 + c 2
−2bc cos α
\ b^2 = a^2 + c^2 - 2ac \textrm{ cos } \betab 2=
m_b^2 = \frac{1}{4}( 2a^2 + 2c^2 - b^2 )m b2 = 41(2a 2 + 2c 2-b 2)
b
Bisector formulas
\ \frac{a}{b} = \frac{m}{n} ba =nm
\ l^2 = ab - mnl 2=ab-mm
A = \frac{1}{2}a\cdot b = \frac{1}{2}c\cdot hA=
\ A = \sqrt{p(p - a)(p - b)(p - c)}A=
p(p−a)(p−b)(p−c)
\iits whatever A = prA=pr with r we denote the radius of the triangle inscribed circle
\ A = \frac{abc}{4R}A=
4R
abc
- R is the radius of the prescribed circle
\ A = \sqrt{p(p - a)(p - b)(p - c)}A=
p(p−a)(p−b)(p−c)
10. acute angles: 0
Right angles: 4
Obtuse angles: 0
Perpendicular lines: 0
Parallel lines: 2
11. Acute angles: 2
Right angles: 0
Obtuse angles: 1
Perpendicular lines: 0
Parallel lines: 0
12. H
Step-by-step explanation:
1/u f church h cfgur5 043925246u 9 f z book no
An isosceles triangle has two equal sides.
a= one equal side
b=base
b+2a=35
a=b+4
b+ 2(b+4)=35
b+2b+8=35
3b+8=35
3b=27
b=9
a=13
Answer:
The trend line is N = -2M + 110
Step-by-step explanation: