Final result :
9y - 17z - 2
Step by step solution :
Step 1 :
1
Simplify —
3
Equation at the end of step 1 :
1
— • (27y - 51z - 6)
3
Step 2 :
Pulling out like terms :
3.1 Pull out like factors :
27y - 51z - 6 = 3 • (9y - 17z - 2)
Final result :
9y - 17z - 2
Answer:
1/sqrt10
Step-by-step explanation:
1) Find out cosA using formula (cosA)^2+(sinA)^2=1
The module of cosA= sqrt (1- (-3/5)^2)= sqrt 16/25=4/5
So cosA=-4/5 or cosA=4/5.
Due to the condition 270degrees< A<360 degrees, 0<cosA<1 that's why cosA=4/5.
2) Find sinA/2 using a formula cosA= 1-2sinA/2*sinA/2 where cosA=4/5.
(sinA/2)^2= 0.1
sinA= sqrt 0.1= 1/ sqrt10 or sinA= - sqrt 0.1= -1/sqrt10
But 270°< A< 360°, then 270/2°<A/2<360/2°
135°<A/2<180°, so sinA/2 must be positive and the only correct answer is
sin A/2= 1/sqrt10
question:
How many cubes with side lengths of \dfrac12 \text{ cm} 2 1 cmstart fraction, 1, divided by, 2, end fraction, start text, space, c, m, end text does it take to fill the prism?
Step-by-step explanation:
81 cubes are needed to fill the prism
Step-by-step explanation:
Volume of prism = 3 cubic units
Side lengths of cube = 1/3
Therefore the volume of the cube is,
V = a³ (a = side of the cube)
V = 1/3 × 1/3 × 1/3
= ( 1/3 )³
= 1/27 cubic units
To find the number of cubes needed to fill the prism, we need to divide the volume of cube by volume of the prism.
Number of cubes to fill the prism= Volume of prism / Volume of cube
= 3÷1/27
=3×27/1
= 81
Therefore, 81 cubes are needed to fill the prism
Answer:
YI =1, XI=7
Step-by-step explanation:
Step-by-step explanation:
(because -1 < 0)

