Answer:
no saboooo99999997
Step-by-step explanation:
becayzw kwk2kudhe
whsyhwbw
wiauy1y133
Answer:
<em>x = -3 and y = 0</em>
Step-by-step explanation:
<em>It would be more direct to apply elimination in this problem, rather than substitution:</em>
2x + 6y = -6 ⇒ 2x + 6y = -6 ⇒ 10x = - 30
+ 2(4x - 3y = -12) + 8x - 6y = -24
<em>Now let us solve for x through simply algebra:</em>
10x = -30,
<em>x = -3</em>
<em>Substitute this value of x into the first equation to get the value of y:</em>
2( -3 ) + 6y = -6,
-6 + 6y = -6,
6y = 0,
<em>y = 0</em>
To answer your question: Rewrite <span>81<span>x2</span></span> as <span><span>(<span>9x</span>)</span>2</span>.<span><span><span>(<span>9x</span>)</span>2</span><span>−49</span></span>Rewrite 49 as <span>72</span>.<span><span><span>(<span>9x</span>)</span>2</span><span>−<span>72</span></span></span> Both terms are perfect squares, factor using the difference of squares formula, <span><span><span>a2</span><span>−<span>b2</span></span></span>=<span><span>(<span>a+b</span>)</span><span>(<span>a<span>−b</span></span>)</span></span></span> where <span>a=<span>9x</span></span> and <span>b=7</span>.<span><span>(<span><span>9x</span>+7</span>)</span><span>(<span><span>9x</span><span>−7</span></span><span>)</span></span></span>
<h3><u>
Answer:</u></h3>
![\boxed{\boxed{\pink{\bf \leadsto Hence \ option\ [d]\ \bigg(y = \dfrac{5}{2}x + 5\bigg) \ is \ correct }}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Cpink%7B%5Cbf%20%5Cleadsto%20Hence%20%5C%20option%5C%20%5Bd%5D%5C%20%5Cbigg%28y%20%3D%20%20%5Cdfrac%7B5%7D%7B2%7Dx%20%2B%205%5Cbigg%29%20%5C%20is%20%5C%20correct%20%20%7D%7D%7D)
<h3>
<u>Step-by-step explanation:</u></h3>
Here from the given graph we can see that the graph the graph intersects x axis at (2,0) and y axis at (5,0). On seeing options it's clear that we have to use Slope intercept form . Which is :-

We know that slope is
. So here slope will be ,
Hence the slope is 5/2 . And here value of c will be 5 since it cuts y axis at (5,0).

<h3>
<u>Hence</u><u> </u><u>option</u><u> </u><u>[</u><u> </u><u>d</u><u> </u><u>]</u><u> </u><u>is</u><u> </u><u>corre</u><u>ct</u><u> </u><u>.</u><u> </u></h3>