Answer:

Step-by-step explanation:
![\sf{ [ (4 \frac{1}{6} + 2 \frac{1}{3} ) \div 4 \frac{1}{3}] - 1\frac{1}{2} }](https://tex.z-dn.net/?f=%20%5Csf%7B%20%5B%20%284%20%5Cfrac%7B1%7D%7B6%7D%20%20%2B%202%20%5Cfrac%7B1%7D%7B3%7D%20%29%20%20%5Cdiv%204%20%5Cfrac%7B1%7D%7B3%7D%5D%20-%20%201%5Cfrac%7B1%7D%7B2%7D%20%7D)
Convert the mixed numbers into improper fraction
![\longrightarrow{ \sf{ [ ( \frac{25}{6} + \frac{7}{3} ) \div \frac{13}{3}] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%28%20%5Cfrac%7B25%7D%7B6%7D%20%20%2B%20%20%5Cfrac%7B7%7D%7B3%7D%20%29%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
Add the fractions : 25 / 6 and 7 / 3
While performing addition or subtraction of unlike fractions, you have to express the given fractions into equivalent fractions of common denominator and add or subtract as we do with like fraction.
To do so, first take the L.C.M of 6 and 3 which results to 6
![\longrightarrow\sf{ [( \frac{25 + 7 \times 2}{6} ) \div \frac{13}{3} ] - \frac{3}{2}}](https://tex.z-dn.net/?f=%20%20%5Clongrightarrow%5Csf%7B%20%5B%28%20%5Cfrac%7B25%20%2B%207%20%5Ctimes%202%7D%7B6%7D%20%29%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%20)
![\longrightarrow{ \sf{ [( \frac{25 + 14}{6} ) \div \frac{13}{3} ] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%28%20%5Cfrac%7B25%20%2B%2014%7D%7B6%7D%20%29%20%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%20%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)
![\longrightarrow{ \sf{ [ \frac{39}{6} \div \frac{13}{3}] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%5Cfrac%7B39%7D%7B6%7D%20%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)
Multiply the dividend by the reciprocal of the divisor.
Reciprocal of any number or fraction can be obtained by interchanging the position of numerator and denominator
![\longrightarrow{ \sf{ [ \frac{39}{6} \times \frac{3}{13} ] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B39%7D%7B6%7D%20%20%5Ctimes%20%20%5Cfrac%7B3%7D%7B13%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
To multiply one fraction by another, multiply the numerators for the numerator and multiply the denominators for its denominator and reduce the fraction obtained after multiplication into lowest term
![\longrightarrow{ \sf{ [ \frac{39 \times 3}{6 \times 13} ] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B39%20%5Ctimes%203%7D%7B6%20%5Ctimes%2013%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
![\longrightarrow{ \sf{ [ \frac{117}{78} ] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B117%7D%7B78%7D%20%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)

While performing the addition or subtraction of like fractions , you just have to add or subtract the numerator respectively in which the denominator is retained same

Subtract 3 from 3

Divide 0 by 2

Hope I helped!
Best regards!
Answer:

Step-by-step explanation:
Hello!
Expand the square using the Distributive Property.
<h3>Expand</h3>
Distributive x - 5 to each factor
The answer is
.
We can also use a special binomial product formula.
Formula: 
We get the same answer both ways.
Given number = 0.44
Find how many times the value of the hundredths place digit to the value
of the tenths place digit.
=> Since this is a decimal number, I believe, the value you mean is
tenths and hundredths, not tens and hundreds.
Now, how many times is the value of each digit differs from each other:
The answer is 10 times
=> 4 hundredths x 10 = 4 tenths
=> 0.04 x 10 = 0.4, which is correct
Answer:
y=1/1
Step-by-step explanation:
If you notice the terms, they're
7, -21, 63, -189 and so forth.
7*-3 = -21 and -21 * -3 is 63 and so forth, meaning the "common ratio" is -3.
now, for a common ratio say "r", which is a fraction, namely less than ±1 and more than 0, or |r| < 1 , you do have a convergent sequence.
however this one notice, |-3| is 3, and that's greater than 1 clearly, therefore is divergent, meaning the summation has no finite value.