You could use perturbation method to calculate this sum. Let's start from:
![S_n=\sum\limits_{k=0}^nk!\\\\\\\(1)\qquad\boxed{S_{n+1}=S_n+(n+1)!}](https://tex.z-dn.net/?f=S_n%3D%5Csum%5Climits_%7Bk%3D0%7D%5Enk%21%5C%5C%5C%5C%5C%5C%5C%281%29%5Cqquad%5Cboxed%7BS_%7Bn%2B1%7D%3DS_n%2B%28n%2B1%29%21%7D)
On the other hand, we have:
![S_{n+1}=\sum\limits_{k=0}^{n+1}k!=0!+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=0}^{n}(k+1)!=\\\\\\=1+\sum\limits_{k=0}^{n}k!(k+1)=1+\sum\limits_{k=0}^{n}(k\cdot k!+k!)=1+\sum\limits_{k=0}^{n}k\cdot k!+\sum\limits_{k=0}^{n}k!\\\\\\(2)\qquad \boxed{S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n}](https://tex.z-dn.net/?f=S_%7Bn%2B1%7D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%2B1%7Dk%21%3D0%21%2B%5Csum%5Climits_%7Bk%3D1%7D%5E%7Bn%2B1%7Dk%21%3D1%2B%5Csum%5Climits_%7Bk%3D1%7D%5E%7Bn%2B1%7Dk%21%3D1%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%2B1%29%21%3D%5C%5C%5C%5C%5C%5C%3D1%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7Dk%21%28k%2B1%29%3D1%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5Ccdot%20k%21%2Bk%21%29%3D1%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7Dk%5Ccdot%20k%21%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7Dk%21%5C%5C%5C%5C%5C%5C%282%29%5Cqquad%20%5Cboxed%7BS_%7Bn%2B1%7D%3D1%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7Dk%5Ccdot%20k%21%2BS_n%7D)
So from (1) and (2) we have:
![\begin{cases}S_{n+1}=S_n+(n+1)!\\\\S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\end{cases}\\\\\\ S_n+(n+1)!=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\\\\\\ (\star)\qquad\boxed{\sum\limits_{k=0}^{n}k\cdot k!=(n+1)!-1}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7DS_%7Bn%2B1%7D%3DS_n%2B%28n%2B1%29%21%5C%5C%5C%5CS_%7Bn%2B1%7D%3D1%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7Dk%5Ccdot%20k%21%2BS_n%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%0AS_n%2B%28n%2B1%29%21%3D1%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7Dk%5Ccdot%20k%21%2BS_n%5C%5C%5C%5C%5C%5C%0A%28%5Cstar%29%5Cqquad%5Cboxed%7B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7Dk%5Ccdot%20k%21%3D%28n%2B1%29%21-1%7D)
Now, let's try to calculate sum
![\sum\limits_{k=0}^{n}k\cdot k!](https://tex.z-dn.net/?f=%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7Dk%5Ccdot%20k%21)
, but this time we use perturbation method.
![S_n=\sum\limits_{k=0}^nk\cdot k!\\\\\\ \boxed{S_{n+1}=S_n+(n+1)(n+1)!}\\\\\\ ](https://tex.z-dn.net/?f=S_n%3D%5Csum%5Climits_%7Bk%3D0%7D%5Enk%5Ccdot%20k%21%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7BS_%7Bn%2B1%7D%3DS_n%2B%28n%2B1%29%28n%2B1%29%21%7D%5C%5C%5C%5C%5C%5C%0A)
but:
![S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\= \sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\= \sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\ \boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}](https://tex.z-dn.net/?f=S_%7Bn%2B1%7D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%2B1%7Dk%5Ccdot%20k%21%3D0%5Ccdot0%21%2B%5Csum%5Climits_%7Bk%3D1%7D%5E%7Bn%2B1%7Dk%5Ccdot%20k%21%3D0%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%2B1%29%28k%2B1%29%21%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%2B1%29%28k%2B1%29k%21%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B2k%2B1%29k%21%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%5Cleft%5B%28k%5E2%2B1%29k%21%2B2k%5Ccdot%20k%21%5Cright%5D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B%5Csum%5Climits_%7Bk%3D0%7D%5En2k%5Ccdot%20k%21%3D%5C%5C%5C%5C%5C%5C%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2%5Csum%5Climits_%7Bk%3D0%7D%5Enk%5Ccdot%20k%21%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7BS_%7Bn%2B1%7D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%7D)
When we join both equation there will be:
![\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\ S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\ \sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\= (n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\= n(n+1)!+1](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7DS_%7Bn%2B1%7D%3DS_n%2B%28n%2B1%29%28n%2B1%29%21%5C%5C%5C%5CS_%7Bn%2B1%7D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%0AS_n%2B%28n%2B1%29%28n%2B1%29%21%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%5C%5C%5C%5C%5C%5C%5C%5C%0A%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%3DS_n-2S_n%2B%28n%2B1%29%28n%2B1%29%21%3D%28n%2B1%29%28n%2B1%29%21-S_n%3D%5C%5C%5C%5C%5C%5C%3D%0A%28n%2B1%29%28n%2B1%29%21-%5Csum%5Climits_%7Bk%3D0%7D%5Enk%5Ccdot%20k%21%5Cstackrel%7B%28%5Cstar%29%7D%7B%3D%7D%28n%2B1%29%28n%2B1%29%21-%5B%28n%2B1%29%21-1%5D%3D%5C%5C%5C%5C%5C%5C%3D%28n%2B1%29%28n%2B1%29%21-%28n%2B1%29%21%2B1%3D%28n%2B1%29%21%5Ccdot%5Bn%2B1-1%5D%2B1%3D%5C%5C%5C%5C%5C%5C%3D%0An%28n%2B1%29%21%2B1)
So the answer is:
![\boxed{\sum\limits_{k=0}^{n}(1+k^2)k!=n(n+1)!+1}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%281%2Bk%5E2%29k%21%3Dn%28n%2B1%29%21%2B1%7D)
Sorry for my bad english, but i hope it won't be a big problem :)
Answer:
![unit\ rate=22\ frames\ per\ second](https://tex.z-dn.net/?f=unit%5C%20rate%3D22%5C%20frames%5C%20per%5C%20second)
Step-by-step explanation:
we know that
To find the unit rate , divide the total frames by the total seconds
Let
x ----> the total frames displayed by the video game
y ----> the total seconds
![unit\ rate=\frac{x}{y}](https://tex.z-dn.net/?f=unit%5C%20rate%3D%5Cfrac%7Bx%7D%7By%7D)
we have
![x=132\ frames\\y=6\ seconds](https://tex.z-dn.net/?f=x%3D132%5C%20frames%5C%5Cy%3D6%5C%20seconds)
substitute the values
![unit\ rate=\frac{132}{6}=22\ frames\ per\ second](https://tex.z-dn.net/?f=unit%5C%20rate%3D%5Cfrac%7B132%7D%7B6%7D%3D22%5C%20frames%5C%20per%5C%20second)
6^-2 , 6^3/6^5 , 6^-9 • 6^7. I believe these are the expressions that are equivalent to 1/36.
Answer:
i will answer it if u raise the point score lol i just need a friend