Answer:
2x° = 45°, 3x° = 67.5°
Step-by-step explanation:
Sum of angles in a triangle = 180°
2x+3x+3x=180°
8x=180°
x=22.5°
2x=22.5°x2=45°
3x=22.5°x3=67.5°
Answer:
0.6247
Step-by-step explanation:
The formula for calculating a Z-score is Z = (X - μ)/σ,
where x is the raw score
μ is the population mean
σ is the population standard deviation.
From the question,
μ = 51, σ = 10. We are to find P(36 ≤ X ≤ 56)
Step 1
Find the Probability of X ≤ 36
μ = 51, σ = 10
Z = (X - μ)/σ
Z = 36 - 51/ 10
Z = -15/10
Z = -1.5
We find the Probability of Z = -1.5 from Z-Table
P(X <36) = P(X = 36) = P(Z = -1.5)
= 0.066807
Step 2
Find the Probability of X ≤ 56
μ = 51, σ = 10
Z = (X - μ)/σ
Z = 56 - 51/ 10
Z = 5/10
Z = 0.5
We find the Probability of Z = 0.5 from Z-Table:
P(X < 56) = P(X = 56) = P(Z = 0.5)= 0.69146
Step 3
Find P(36 ≤ X ≤ 56)
P(36 ≤ X ≤ 56) = P(X ≤ 56) - P(X ≤ 36)
= P( Z = 0.5) - P(Z = -1.5)
= 0.69146 - 0.066807
= 0.624653
Approximately to 4 decimal places , P(36 ≤ X ≤ 56) = 0.6247
5n-4 = 6 gives the equation for 5 times #Nathan rode less 4 miles which solves to n = 2
Nathan rode 2 miles. (5*2)-4 = 6 10-4=6 so 2 miles is right
This problem is better understood with a given figure. Assuming
that the flight is in a perfect northwest direction such that the angle is 45°,
therefore I believe I have the correct figure to simulate the situation (see
attached).
Now we are asked to find for the value of the hypotenuse
(flight speed) given the angle and the side opposite to the angle. In this
case, we use the sin function:
sin θ = opposite side / hypotenuse
sin 45 = 68 miles per hr / flight
flight = 68 miles per hr / sin 45
<span>flight = 96.17 miles per hr</span>
V = πr²h
V = (3.14)(5)²(16)
V = (3.14)(25)(16)
V = 1256
Hope this helps :)