1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mademuasel [1]
2 years ago
11

OH MY GOSH PLSSS HELP!!!

Mathematics
1 answer:
Nataly_w [17]2 years ago
8 0

Answer:

Step-by-step explanation:

5x2=10 3x4=12 2x2=4 6x1=6

You might be interested in
Mrs. Gonzalez bought a puzzle for $10.95, a board game for $15.95, and a table lamp for $17.10. After tax, the total amount due
inn [45]

Answer:

6.5%

Step-by-step explanation:

15.95+10.95+17.10 = 44

46.86-44 = 2.86

2.86/44 = 0.065

0.065 = 6.5%

6 0
3 years ago
The equation f=v+at represents the final velocity of an qbject, f, with an initial velicity, v, and an acceleration rate, a, ove
otez555 [7]
(f-v)/a=t.............
5 0
3 years ago
Read 2 more answers
What is the area of the parallelogram below if b=6.1? Round your answer to the nearest tenth.
Alisiya [41]
The answer to this is 48.8
6 0
3 years ago
the empire state building is 1250 feet tall. IF an object is thrown upward from the top of the building at an initial velocity o
ss7ja [257]

Answer:

Time for the object to get h(max)    s = 1.1875 sec

h (max)  = 1272.57 feet

Down time for the object to hit the ground   =  4.25 sec

Step-by-step explanation:

The relation

h(s)  =  -  16*s²  +  38* s  + 1250    (1)

Is equivalent to the equation for vertical shot

Δh = V(i)*t  -  1/2g*t²  (in this case we don´t have independent term since the shot is from ground level. We can see in (1), the independent term is 1250 feet ( the height of the empire state building), the starting point of the movement.

The description of the movement is:

V(s)  =  V(i)  - g*s     ⇒  V(s) = 38 - 32*s

At h(max)    V(s)  =  0      38/32  = s

So the maximum height is at  s = t = 1.1875 sec

The time for the object to pass for starting point is the same

t  =  1.1875 sec

h(max) is

h(max)  = - 16* (1.1875)² +  38 (1.1875) + 1250

h(max)  =  -  22,56  +  45.13  +  1250

h(max)  =  1272.57 feet

Time for the object to hit the ground is

h(s)  =  - 1250 feet

-1250  =  - 16 s² + 38*s  + 1250

-16s² +  38s  =  0

s ( -16s + 38 )  =  0

First solution for that second degree equation  is x = 0 which we dismiss

then  

( -16s + 38 )  =  0    ⇒ 16s   =  38     s  =  38/16

s =  2.375 sec    and  we have to add time between h (max) and to get to starting point  ( 1. 1875 sec)

total time is  = 2.375 + 1.875

Total time  =  4.25 sec

4 0
3 years ago
Y''+y'+y=0, y(0)=1, y'(0)=0
mars1129 [50]

Answer:

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Step-by-step explanation:

A second order linear , homogeneous ordinary differential equation has form ay''+by'+cy=0.

Given: y''+y'+y=0

Let y=e^{rt} be it's solution.

We get,

\left ( r^2+r+1 \right )e^{rt}=0

Since e^{rt}\neq 0, r^2+r+1=0

{ we know that for equation ax^2+bx+c=0, roots are of form x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} }

We get,

y=\frac{-1\pm \sqrt{1^2-4}}{2}=\frac{-1\pm \sqrt{3}i}{2}

For two complex roots r_1=\alpha +i\beta \,,\,r_2=\alpha -i\beta, the general solution is of form y=e^{\alpha t}\left ( c_1\cos \beta t+c_2\sin \beta t \right )

i.e y=e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Applying conditions y(0)=1 on e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right ), c_1=1

So, equation becomes y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

On differentiating with respect to t, we get

y'=\frac{-1}{2}e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )+e^{\frac{-t}{2}}\left ( \frac{-\sqrt{3}}{2} \sin \left ( \frac{\sqrt{3}t}{2} \right )+c_2\frac{\sqrt{3}}{2}\cos\left ( \frac{\sqrt{3}t}{2} \right )\right )

Applying condition: y'(0)=0, we get 0=\frac{-1}{2}+\frac{\sqrt{3}}{2}c_2\Rightarrow c_2=\frac{1}{\sqrt{3}}

Therefore,

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

3 0
3 years ago
Other questions:
  • Help please!!! Asap: Use 2,4,6,8 to create a question that has an answer of 10
    9·1 answer
  • Name all of the sets to which the real number 78 belongs.
    11·2 answers
  • Need Help with Number 3. Please help asap.​
    10·1 answer
  • A global positioning satelite transmits a radio wave with a wavelength of 19 cm. What is the frequncy of the radio wave ?
    10·1 answer
  • The model represents an equation.
    6·1 answer
  • I need help with this questions
    15·1 answer
  • How do you find the system of equations for a graph?
    7·2 answers
  • Find the missing fraction 2/5 + _ = 7/10
    15·1 answer
  • Find the missing side of the triangle. Then round to the near test tenth if necessary
    5·1 answer
  • HELP HELP PLEASE!!!!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!