Hello,
Very nice as problem.
2 solutions:
1 quater,8 dimes, 2 pennies
and
3 quaters,3 dimes, 2 pennies
since
107=( 0, 0, 107) but : 100= 0*25+ 0*10+ 100
107=( 0, 1, 97) but : 100= 0*25+ 1*10+ 90
107=( 0, 2, 87) but : 100= 0*25+ 2*10+ 80
107=( 0, 3, 77) but : 100= 0*25+ 3*10+ 70
107=( 0, 4, 67) but : 100= 0*25+ 4*10+ 60
107=( 0, 5, 57) but : 100= 0*25+ 5*10+ 50
107=( 0, 6, 47) but : 100= 0*25+ 6*10+ 40
107=( 0, 7, 37) but : 100= 0*25+ 7*10+ 30
107=( 0, 8, 27) but : 100= 0*25+ 8*10+ 20
107=( 0, 9, 17) but : 100= 0*25+ 9*10+ 10
107=( 0, 10, 7) but : 100= 0*25+ 10*10+ 0
107=( 1, 0, 82) but : 100= 1*25+ 0*10+ 75
107=( 1, 1, 72) but : 100= 1*25+ 1*10+ 65
107=( 1, 2, 62) but : 100= 1*25+ 2*10+ 55
107=( 1, 3, 52) but : 100= 1*25+ 3*10+ 45
107=( 1, 4, 42) but : 100= 1*25+ 4*10+ 35
107=( 1, 5, 32) but : 100= 1*25+ 5*10+ 25
107=( 1, 6, 22) but : 100= 1*25+ 6*10+ 15
107=( 1, 7, 12) but : 100= 1*25+ 7*10+ 5
107=( 1, 8, 2) is good
107=( 2, 0, 57) but : 100= 2*25+ 0*10+ 50
107=( 2, 1, 47) but : 100= 2*25+ 1*10+ 40
107=( 2, 2, 37) but : 100= 2*25+ 2*10+ 30
107=( 2, 3, 27) but : 100= 2*25+ 3*10+ 20
107=( 2, 4, 17) but : 100= 2*25+ 4*10+ 10
107=( 2, 5, 7) but : 100= 2*25+ 5*10+ 0
107=( 3, 0, 32) but : 100= 3*25+ 0*10+ 25
107=( 3, 1, 22) but : 100= 3*25+ 1*10+ 15
107=( 3, 2, 12) but : 100= 3*25+ 2*10+ 5
107=( 3, 3, 2) is good
107=( 4, 0, 7) but : 100= 4*25+ 0*10+ 0
C. y - 3 = 2/3(x-3)
Nothing much to do here except examine each equation and plug in the numbers to see if it's true.
a. y + 3 = 3/2(x+3)
Try 3,3
3 + 3 = 3/2(3+3)
6 = 3/2(6). And no need to go further, it's obviously not equal.
b. y - 3 = 3/2(x-3)
Try 3,3
3 - 3 = 3/2(3-3)
0 = 3/2(0). OK. Let's try 6,5
5 - 3 = 3/2(6-3)
2 = 3/2(3)
2 = 9/2 And it's not true, so check the next one.
c. y - 3 = 2/3(x-3)
Try 3,3
3 - 3 = 2/3(3-3)
0 = 0. Check 6,5
5 - 3 = 2/3(6-3)
2 = 2/3(3)
2 = 2. Good. Both sample points work. This is the correct answer.
Just to be sure, let's check the next option
d. y + 3 = 2/3(x+3)
Try 3,3
3 + 3 = 2/3(3+3)
6 = 2/3(6). And doesn't match.
Answer:
<em><u>C. Multiply by the reciprocal</u></em>
<em><u>A. Use the phrase keep, change, flip, then solve</u></em><em><u>. </u></em>