Using the two parallel line theorems we proved that ∠8 ≅ ∠4.
In the given question,
Given: f || g
Prove: ∠8 ≅ ∠4
We using given diagram in proving that ∠8 ≅ ∠4
Since f || g, by the Corresponding Angles Postulate which states that "When a transversal divides two parallel lines, the resulting angles are congruent." So
∠8≅∠6
Then by the Vertical Angles Theorem which states that "When two straight lines collide, two sets of linear pairs with identical angles are created."
∠6≅∠4
Then, by the Transitive Property of Congruence which states that "All shapes are congruent to one another if two shapes are congruent to the third shape."
∠8 ≅ ∠4
Hence, we proved that ∠8 ≅ ∠4.
To learn more about parallel line theorems link is here
brainly.com/question/27033529
#SPJ1
<h2> 4(x - 8) + 10 = -10</h2><h2 />
Start by subtracting 10 from both sides.
This gives us 4x - 32 = -20.
Now add 32 to both sides to get 4x = 12.
Now divide both sides by 3 to get <em>x = 3</em>.
Answer:
n=6
Step-by-step explanation:
Answer:
The first one. 4 times square root of 3.
Step-by-step explanation:
The side of the equilateral triangle that represents the height of the triangle will have a length of because it will be opposite the 60o angle. To calculate the area of the triangle, multiply the base (one side of the equilateral triangle) and the height (the perpendicular bisector) and divide by two.
What underlined digit nothing is underlined