1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oliga [24]
2 years ago
11

Let x be a positive number such that

= 4x + 9" alt="2x^2 = 4x + 9" align="absmiddle" class="latex-formula">. If x can be written in simplified form as $\dfrac{a + \sqrt{b}}{c}$ such that a, b, and c are positive integers, what is a + b + c?
Mathematics
1 answer:
xenn [34]2 years ago
8 0

Answer:

(4 ± 2\sqrt{22}) ÷ 4

Step-by-step explanation:

i changed equation to be 2x² - 4x - 9 = 0

i used the quadratic formula:  (-b ± \sqrt{b^2-4ac}) ÷ 2a

where:

a = 2

b = -4

c = -9

You might be interested in
I can't figure this one out.
mezya [45]

Answer:

I'm pretty sure the answer is B. x+6

Step-by-step explanation:

a polynomial with two terms (x and 6) is called a binomial. bi means two, so your answer would have two terms! hope this helped :)

5 0
3 years ago
You take out a student loan for $80,000 with 2.75% annual interest to pay for your first year of college. This loan will cover a
yKpoI14uk [10]

Exponential growth equation would be

Amount= 80,000 (1+2.75/100) ⁴

At the end of 4 years I would have to repay an amount of $ 89,169.70

Step-by-step explanation:

Since, the amount is loaned it would vary exponentially i.e. in a compounding manner.

We know that for compound interest, the equation is written as-

Amount= principal(1+r/100) ˣ

Where r- rate of interest which is 2.75% annually

And x= time period= 4 years as in the question

Principal= $ 80,000

Therefore, Equation becomes-

Amount= 80,000(1+2.75/100) ⁴

On solving this Amount would equal $ 89,169.70

Hence, at the end of 4 years I would have to repay an amount of $ 89,169.70.

6 0
3 years ago
Please help I need answers. zoom in if you can't see it
Evgesh-ka [11]

Answer:

The answer is a, 8+s=10  

Step-by-step explanation:


7 0
3 years ago
Read 2 more answers
9. Calcule el valor de la fuerza que experimenta un ascensor cuando levanta 150 kg en los siguientes casos: a) Cuando asciende c
GenaCL600 [577]

Answer:

a) La fuerza neta que experimenta un ascensor cuando asciende con una aceleración de 4 metros por segundo al cuadrado es 600 newtons hacia arriba.

b) La fuerza neta que experimenta un ascensor cuando desciende con una aceleración de 6 metros por segundo al cuadrado es 900 newtons hacia abajo.

c) Por la fuerza de tensión sobre el cable del ascensor.

Step-by-step explanation:

a) La fuerza neta experimentada por el ascensor (F), en newtons, es:

F = m\cdot a (1)

Donde:

m - Masa, en kilogramos.

a - Aceleración, en metros por segundo cuadrado.

Si sabemos que m = 150\,kg y a = 4\,\frac{m}{s^{2}}, entonces la fuerza neta del ascensor es:

F = m\cdot a

F = 600\,N

La fuerza neta que experimenta un ascensor cuando asciende con una aceleración de 4 metros por segundo al cuadrado es 600 newtons hacia arriba.

b) Si sabemos que m = 150\,kg y a = -6\,\frac{m}{s^{2}}, entonces la fuerza neta del ascensor es:

F = m\cdot a

F = -900\,N

La fuerza neta que experimenta un ascensor cuando desciende con una aceleración de 6 metros por segundo al cuadrado es 900 newtons hacia abajo.

c) De manera simplificada, el ascensor experimenta dos fuerzas que definen la fuerza y aceleración netas: (i) La fuerza de tensión sobre el cable que traslada el ascensor y el peso total del ascensor, opuesta a la anterior y en función de la aceleración gravitacional. Puesto que la masa no varía en ningún caso, se concluye que el peso es constante, entonces la diferencia de valores se debe a la fuerza por tensión del cable. En el descenso, es fuerza es menor que en el ascenso.

8 0
3 years ago
-1/2 divided by 1 3/4 as a fraction in simplest form
Helen [10]

\Large\textsf{\textbf{Answer\;:}}}

\large\textsf{refer\:to\:the\:"calculations"\:section\:of\:this\:ans}

\Large\textsf{\textbf{Calculations\::}}

-\displaystyle\frac{1}{2} :1\frac{3}{4}

First , convert the mixed number (the fraction we are dividing by in the given maths problem) into an improper fraction .

Multiply the whole part (1) times the denominator (4) and add the numerator . The result is the numerator of our fraction , and the denominator stays the same .

So now our maths problem looks as follows :

-\displaystyle\frac{1}{2} :\frac{7}{4}

Now turn the fraction you are dividing by over :

-\displaystyle\frac{1}{2} *\frac{4}{7}

Now multiply the numerator of the first fraction times the numerator of the second fraction :

4

Perform the same operation with the denominators :

-4/14

So the result is :

-\displaystyle\frac{4}{14}

Since the above fraction is not in it's simplest form , we divide the top and bottom by 2 (a common factor of both 4 and 14) :

-\displaystyle\frac{2}{7}

\footnotesize\textsf{hope\:helpful~}

8 0
3 years ago
Other questions:
  • Statements and reasons
    6·1 answer
  • Which unit rate corresponds to the proportional relationship shown in the graph? Drag and drop the answer into the box to match
    9·2 answers
  • Dina is getting a new rug for her hallway. The rug is 5/6 meter wide and 9 meters long. What is the area of the rug?
    7·1 answer
  • Lilly found 40 seashells. She
    15·2 answers
  • PLEASE HELP<br> i can’t find this one so....
    12·2 answers
  • E) Write 4.08 as a fraction in its simplest form.​
    5·1 answer
  • Please help, I am not able to find the answer
    15·1 answer
  • Help me please this is too hard for me
    9·1 answer
  • In the Tigers Football Club, there are 9 players to each coach, while in the Eagles Football Club, there are 17 players to every
    15·1 answer
  • Use the properties of numbers to simplify:2(3/2+0,5)+½​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!