Answer:
B.60
Step-by-step explanation:
He expects to take 2 months to complete the ride. What is the minimum number of miles that he must plan to ride each day to complete his ride in 60 days?
It's 60 miles per day to get to Los Angeles to Washington D.C
Hope it helped you brainiest plz and thank you!!!!!!!!!!!
Answer:
tan(2u)=[4sqrt(21)]/[17]
Step-by-step explanation:
Let u=arcsin(0.4)
tan(2u)=sin(2u)/cos(2u)
tan(2u)=[2sin(u)cos(u)]/[cos^2(u)-sin^2(u)]
If u=arcsin(0.4), then sin(u)=0.4
By the Pythagorean Identity, cos^2(u)+sin^2(u)=1, we have cos^2(u)=1-sin^2(u)=1-(0.4)^2=1-0.16=0.84.
This also implies cos(u)=sqrt(0.84) since cosine is positive.
Plug in values:
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.84-0.16]
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.68]
tan(2u)=[(0.4)(sqrt(0.84)]/[0.34]
tan(2u)=[(40)(sqrt(0.84)]/[34]
tan(2u)=[(20)(sqrt(0.84)]/[17]
Note:
0.84=0.04(21)
So the principal square root of 0.04 is 0.2
Sqrt(0.84)=0.2sqrt(21).
tan(2u)=[(20)(0.2)(sqrt(21)]/[17]
tan(2u)=[(20)(2)sqrt(21)]/[170]
tan(2u)=[(2)(2)sqrt(21)]/[17]
tan(2u)=[4sqrt(21)]/[17]
Answer:
The first one
Step-by-step explanation:
Today’s temperature was less than Negative 15 degrees Fahrenheit.
Answer:
prove that opposite sides are congruent and parallel
Step-by-step explanation:
i took the testtttttt
Let p be
the population proportion. <span>
We have p=0.60, n=200 and we are asked to find
P(^p<0.58). </span>
The thumb of the rule is since n*p = 200*0.60
and n*(1-p)= 200*(1-0.60) = 80 are both at least greater than 5, then n is
considered to be large and hence the sampling distribution of sample
proportion-^p will follow the z standard normal distribution. Hence this
sampling distribution will have the mean of all sample proportions- U^p = p =
0.60 and the standard deviation of all sample proportions- δ^p = √[p*(1-p)/n] =
√[0.60*(1-0.60)/200] = √0.0012.
So, the probability that the sample proportion
is less than 0.58
= P(^p<0.58)
= P{[(^p-U^p)/√[p*(1-p)/n]<[(0.58-0.60)/√0...
= P(z<-0.58)
= P(z<0) - P(-0.58<z<0)
= 0.5 - 0.2190
= 0.281
<span>So, there is 0.281 or 28.1% probability that the
sample proportion is less than 0.58. </span>