Answer: 3
For this question, we will use the angle bisector theorem.
Angle Bisector Theorem: In geometry, the angle bisector theorem is concerned with the relative lengths of the two segments that a triangle's side is divided into by a line that bisects the opposite angle. It equates their relative lengths to the relative lengths of the other two sides of the triangle.
Now let's place it according to a general formula.
x/2.25 = 4/3
x= 4/3 * 2.25
x= 3
There you go! now you know the answer and the way to do it! Brainliest pweasee if the answer is correct and helpful!
<h2>૮꒰ ˶• ༝ •˶꒱ა</h2><h2>./づᡕᠵ᠊ᡃ࡚ࠢ࠘ ⸝່ࠡࠣ᠊߯᠆ࠣ࠘ᡁࠣ࠘᠊᠊°.~♡︎ Sara Senpie</h2>
For set of dishes,price of discount =10%of $35.66=$3.566
Cost price of set of dishes = $35.66
Selling price of set of dishes =$35.66-$3.566
=$32.094
Cost price of towel=$21.56
Price of coupon =$2.75
Selling price after using coupon =$21.56-$2.75= $18.81
Cost price of candle =$9.02
Price of coupon=$0.50
Selling price of candle after using coupon =$9.02 -$0.50 =$8.52
Therefore the answer is D since she saved the greatest percentage on the set of dishes
Let
C-------> the length of a circumference
C=2*pi*r-----> equation 1
we know that
in this problem-----> <span>the circumference of the foundation is 4 times the radius, increased by 114 ft
</span>so
C=4*r+114------> equation 2
(1)=(2)
2*pi*r=4*r+114------> 2*pi*r-4*r=114-----> r*[2*pi-4]=114---> r=114/[2*pi-4]
r=114/[2*pi-4]-----> 50 ft
the answer is
r=50 ft
Answer:
It's C! y = 7
Step-by-step explanation:
a = 6, is your answer.
Square both sides
<span><span><span>9=a−2<span>(6−a)(2a−3)</span>+3</span>9=a-2\sqrt{(6-a)(2a-3)}+3</span><span>9=a−2<span>√<span><span><span>(6−a)(2a−3)</span></span><span></span></span></span>+3
</span></span>2 .Separate terms with roots from terms without roots
<span><span><span>9−a−3=−2<span>(6−a)(2a−3)</span></span>9-a-3=-2\sqrt{(6-a)(2a-3)}</span><span>9−a−3=−2<span>√<span><span><span>(6−a)(2a−3)
</span></span><span></span></span></span></span></span>
3. Simplify <span><span><span>9−a−3</span>9-a-3</span><span>9−a−3</span></span> to <span><span><span>6−a</span>6-a</span><span>6−a
</span></span><span><span><span>6−a=−2<span>(6−a)(2a−3)</span></span>6-a=-2\sqrt{(6-a)(2a-3)}</span><span>6−a=−2<span>√<span><span><span>(6−a)(2a−3)
</span></span><span></span></span></span></span></span>
4 .Square both sides
<span><span><span><span><span>(6−a)</span>2</span>=4(6−a)(2a−3)</span>{(6-a)}^{2}=4(6-a)(2a-3)</span><span><span><span>(6−a)</span><span><span>2</span><span></span></span></span>=4(6−a)(2a−3)
</span></span>5 .Expand
<span><span><span>36−12a+<span>a2</span>=48a−72−8<span>a2</span>+12a</span>36-12a+{a}^{2}=48a-72-8{a}^{2}+12a</span><span>36−12a+<span>a<span><span>2</span><span></span></span></span>=48a−72−8<span>a<span><span>2</span><span></span></span></span>+12a
</span></span>6. Simplify <span><span><span>48a−72−8<span>a2</span>+12a</span>48a-72-8{a}^{2}+12a</span><span>48a−72−8<span>a<span><span>2</span><span></span></span></span>+12a</span></span> to <span><span><span>60a−72−8<span>a2</span></span>60a-72-8{a}^{2}</span><span>60a−72−8<span>a<span><span>2</span><span></span></span></span></span></span>
<span><span><span>36−12a+<span>a2</span>=60a−72−8<span>a2</span></span>36-12a+{a}^{2}=60a-72-8{a}^{2}</span><span>36−12a+<span>a<span><span>2</span><span></span></span></span>=60a−72−8<span>a<span><span>2
</span><span></span></span></span></span></span>
7. Move all terms to one side
<span><span><span>36−12a+<span>a2</span>−60a+72+8<span>a2</span>=0</span>36-12a+{a}^{2}-60a+72+8{a}^{2}=0</span><span>36−12a+<span>a<span><span>2</span><span></span></span></span>−60a+72+8<span>a<span><span>2</span><span></span></span></span>=0
</span></span>8. Simplify <span><span><span>36−12a+<span>a2</span>−60a+72+8<span>a2</span></span>36-12a+{a}^{2}-60a+72+8{a}^{2}</span><span>36−12a+<span>a<span><span>2</span><span></span></span></span>−60a+72+8<span>a<span><span>2</span><span></span></span></span></span></span> to <span><span><span>36−72a+9<span>a2</span>+72</span>36-72a+9{a}^{2}+72</span><span>36−72a+9<span>a<span><span>2</span><span></span></span></span>+72</span></span>
<span><span><span>36−72a+9<span>a2</span>+72=0</span>36-72a+9{a}^{2}+72=0</span><span>36−72a+9<span>a<span><span>2</span><span></span></span></span>+72=0
</span></span>9 .Simplify <span><span><span>36−72a+9<span>a2</span>+72</span>36-72a+9{a}^{2}+72</span><span>36−72a+9<span>a<span><span>2</span><span></span></span></span>+72</span></span> to <span><span><span>−72a+9<span>a2</span>+108</span>-72a+9{a}^{2}+108</span><span>−72a+9<span>a<span><span>2</span><span></span></span></span>+108</span></span>
<span><span><span>−72a+9<span>a2</span>+108=0</span>-72a+9{a}^{2}+108=0</span><span>−72a+9<span>a<span><span>2</span><span></span></span></span>+108=0
</span></span>10.Factor out the common term <span><span>99</span>9</span>
<span><span><span>−9(8a−<span>a2</span>−12)=0</span>-9(8a-{a}^{2}-12)=0</span><span>−9(8a−<span>a<span><span>2</span><span></span></span></span>−12)=0
</span></span>11. Factor out the negative sign
<span><span><span>−9×−(<span>a2</span>−8a+12)=0</span>-9\times -({a}^{2}-8a+12)=0</span><span>−9×−(<span>a<span><span>2</span><span></span></span></span>−8a+12)=0
</span></span>12. Divide both sides by <span><span><span>−9</span>-9</span><span>−9</span></span>
<span><span><span>−<span>a2</span>+8a−12=0</span>-{a}^{2}+8a-12=0</span><span>−<span>a<span><span>2</span><span></span></span></span>+8a−12=0
</span></span>13. Multiply both sides by <span><span><span>−1</span>-1</span><span>−1</span></span>
<span><span><span><span>a2</span>−8a+12=0</span>{a}^{2}-8a+12=0</span><span><span>a<span><span>2</span><span></span></span></span>−8a+12=0
</span></span>14. Factor <span><span><span><span>a2</span>−8a+12</span>{a}^{2}-8a+12</span><span><span>a<span><span>2</span><span></span></span></span>−8a+12</span></span>
<span><span><span>(a−6)(a−2)=0</span>(a-6)(a-2)=0</span><span>(a−6)(a−2)=0
</span></span>15. Solve for <span><span>aa</span>a</span>
<span><span><span>a=6,2</span>a=6,2</span><span>a=6,2
</span></span>16 Check solution
When <span><span><span>a=2</span>a=2</span><span>a=2</span></span>, the original equation <span><span><span>−3=<span>6−a</span>−<span>2a−3</span></span>-3=\sqrt{6-a}-\sqrt{2a-3}</span><span>−3=<span>√<span><span><span>6−a</span></span><span></span></span></span>−<span>√<span><span><span>2a−3</span></span><span></span></span></span></span></span> does not hold true.
We will drop <span><span><span>a=2</span>a=2</span><span>a=2</span></span> from the solution set.
17. Therefore,
<span><span><span>a=6</span></span><span /></span>