Answer: Fluorescence microscope
Explanation:
The basic function of a fluorescence microscope is to irradiate the specimen with a desired and specific band of wavelengths. A fluorescence microscope uses a mercury or xenon lamp to produce ultraviolet light. The light comes into the microscope and hits a dichroic mirror. The dichroic mirror reflects the ultraviolet light up to the specimen. The ultraviolet light excites fluorescence within molecules in the specimen. The objective lens collects the fluorescent-wavelength light produced. This fluorescent light passes through the dichroic mirror and a barrier filter, making it to the eyepiece to form the image.
What happens to the ocean water as it moves from Antarctica to the equator is : ( B ) It becomes less dense and rises to the surface.
<h3>Concept conveyor belt </h3>
The conveyor belt is a system of oceans which transports water and propel deep current of water bodies across the globe based on the differences in water densities.
As the ocean water moves from the Antarctica to the equator the cold ocean water mixes with the warm ocean water at the equator, which makes the water less dense and rises to the surface.
Hence we can conclude that What happens to the ocean water as it moves from Antarctica to the equator is It becomes less dense and rises to the surface.
Learn more about the conveyor belt : brainly.com/question/14910379
#SPJ1
A Dew forms on grass when water vapor forms when molecules cool and join together.
B Gases expand when heated and contract when cooled.
Obligate symbiotic fungi that form associations with plants by entering their cortical cells without invading the plant cells membrane are called endomycorrhizae and include the genus Glomus. Many plants form associations called mycorrhizae with fungi that give them access to nutrients in the soil, protecting against disease and toxicities. In these associations the fungi are integrated into the physical structure of the root, where the fungi colonize the living root tissue during active plant growth.