Answer:
1) 
2) 
Step-by-step explanation:
1)
<---------- given linear equations
Equations Simplified or Rearranged :

Graphic Representation of the Equations : PICTURE #1

Solve by <u><em>Substitution</em></u> :
// Solve equation [1] for the variable y
![[1] y = x + 4](https://tex.z-dn.net/?f=%5B1%5D%20%20%20%20y%20%3D%20x%20%2B%204)
// Plug this in for variable y in equation [2]
![3*(x +4) + 5x = -4 \\ [2] 8x = -16](https://tex.z-dn.net/?f=3%2A%28x%20%2B4%29%20%2B%205x%20%3D%20-4%20%20%5C%5C%20%5B2%5D%20%20%20%208x%20%3D%20-16)
// Solve equation [2] for the variable x

// By now we know this much :

// Use the x value to solve for y

Solution :

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2)
<----- linear equations given
Equations Simplified or Rearranged :

Graphic Representation of the Equations : PICTURE #2

Solve by Substitution :
// Solve equation [1] for the variable y
![[1] y = 2x](https://tex.z-dn.net/?f=%5B1%5D%20%20%20%20y%20%3D%202x)
// Plug this in for variable y in equation [2]
![[2] -2*(2x) - 8x = 24\\ [2] - 12x = 24](https://tex.z-dn.net/?f=%5B2%5D%20%20%20%20-2%2A%282x%29%20-%208x%20%3D%2024%5C%5C%20%20%20%5B2%5D%20%20%20%20%20-%2012x%20%3D%2024)
// Solve equation [2] for the variable x
![[2] 12x = - 24 [2] x = - 2](https://tex.z-dn.net/?f=%5B2%5D%20%20%20%2012x%20%3D%20-%2024%20%20%20%20%5B2%5D%20%20%20%20x%20%3D%20-%202)
// By now we know this much :

// Use the x value to solve for y

Solution :
