Answer:
<h2>
AC = 36.01</h2>
Step-by-step explanation:
Given ΔABC and ΔADB, since both triangles are right angled triangles then the following are true.
From ΔADB, AB² = AD²+BD²
Given AB = 24 and AD = 16
BD² = AB² - AD²
BD² = 24²-16²
BD² = 576-256
BD² = 320
BD = 
BD = 17.9
from ΔABC, AC² = AB²+BC²
SInce AC = AD+DC and BC² = BD² + DC² (from ΔBDC )we will have;
(AD+DC)² = AB²+ (BD² + DC²)
Given AD = 16, AB = 24 and BD = 17.9, on substituting
(16+DC)² = 24²+17.9²+ DC²
256+32DC+DC² = 24²+17.9²+ DC²
256+32DC = 24²+17.9²
32DC = 24²+17.9² - 256
32DC = 640.41
DC = 
DC = 20.01
Remember that AC = AD+DC
AC = 16+20.01
AC = 36.01
The volume of the log is 8817.12 cubic inches. Because:
37.68=2πr
r= 6 in.
V=πr^2h
V=π6^2×78
V= 8817.12 cubic inches.
Hope it help!
240 / 15 = 16 weeks
(15 * 20) - 5 = ?
<span>
295</span>
Luckily for us, this problem solved the bulk of its own question!
Now, all we have to do is solve for "x", or the amount of fiction books and plug its value back into the original equation to find the value of "y", or the amount of nonfiction books.
2x = 38
x = 19
There are 19 fiction books.
x + y = 26
19 + y = 26
y = 7
There are 7 nonfiction books.
Hope this helps!
Answer:
option c is correct.
Step-by-step explanation:
![7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{16x}\right)-3\left(\sqrt[3]{8x}\right)](https://tex.z-dn.net/?f=7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B16x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B8x%7D%5Cright%29)
WE need to simplify this equation.
Solve the parenthesis of each term.
![=7\left\sqrt[3]{2x}\right-3\left\sqrt[3]{16x}\right-3\left\sqrt[3]{8x}\right](https://tex.z-dn.net/?f=%3D7%5Cleft%5Csqrt%5B3%5D%7B2x%7D%5Cright-3%5Cleft%5Csqrt%5B3%5D%7B16x%7D%5Cright-3%5Cleft%5Csqrt%5B3%5D%7B8x%7D%5Cright)
Now, We will find factors of the terms inside the square root
factors of 2: 2
factors of 16 : 2x2x2x2
factors of 8: 2x2x2
Putting these values in our equation:![=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2X2 x}\right)-3\left(\sqrt[3]{2X2X2 x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3*2\left(\sqrt[3] {2 x}\right)-3*2\left(\sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)](https://tex.z-dn.net/?f=%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2X2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%20x%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%7D%20%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%7D%20%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2%5E3%7D%20%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2%5E3%7D%20%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%2A2%5Cleft%28%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%2A2%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%5Cright%29-6%5Cleft%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29)
Adding like terms we get:
![=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right\\=(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\](https://tex.z-dn.net/?f=%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%5Cright%29-6%5Cleft%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%5C%5C%3D%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C)
![(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\can\,\,be \,\, written\,\, as\,\,\\(\sqrt[3] {2x})-6\left(\sqrt[3]{x}\right)](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5Ccan%5C%2C%5C%2Cbe%20%5C%2C%5C%2C%20written%5C%2C%5C%2C%20as%5C%2C%5C%2C%5C%5C%28%5Csqrt%5B3%5D%20%7B2x%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29)
So, option c is correct