The angles in degrees to radian is as follows:
-54 degrees = -3π / 10 radian
<h3>How to convert from degree to radian?</h3>
The measurement is in degrees. Let's convert it to radian with respect to π.
Therefore,
180 degrees = π radian
-54 degrees = ?
cross multiply
Hence,
angle in radian = -54 × π / 180
angle in radian = - 54π / 180
angle in radian = - 6π / 20
angle in radian = -3π / 10 radian
learn more on radian here: brainly.com/question/22212006
#SPJ1
Answer: B. -3, -2, 1, 2, 5
Step-by-step explanation:
Please give brainliest
Answer:
![15 \sqrt[3]{2}](https://tex.z-dn.net/?f=15%20%5Csqrt%5B3%5D%7B2%7D%20)
Step-by-step explanation:
![{(27 \times 250)}^{ \frac{1}{3} } = {(27 \times 125 \times 2)}^{ \frac{1}{3} } \\ = {27}^{ \frac{1}{3} } \times {125}^{ \frac{1}{3} } \times {2}^{ \frac{1}{3} } \\ = \sqrt[ 3]{27} \times \sqrt[3]{125} \times \sqrt[3]{2} \\ = \sqrt[3]{ {3}^{3} } \times \sqrt[3]{ {5}^{3} } \times \sqrt[3]{2} \\ = 3 \times 5 \times \sqrt[3]{2} \\ = 15 \sqrt[3]{2}](https://tex.z-dn.net/?f=%20%7B%2827%20%5Ctimes%20250%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%7B%2827%20%5Ctimes%20125%20%5Ctimes%202%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B125%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B%203%5D%7B27%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B125%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B5%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%203%20%5Ctimes%205%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%2015%20%5Csqrt%5B3%5D%7B2%7D%20)
The expression which represents the other factor, or factors, of the given polynomial is option (C) (2x-1)(x+1)
A cubic equation in algebra is a one-variable equation of the form ax3+bx2+cx+d=0 where an is nonzero. The roots of the cubic function defined by the left side of this equation are the solutions to this equation.
Given expression 2x³-3x²-3x+2 whose one of factor is (x-2)
We have to find second factor of given equation
First we will be rational root theorem to given expression so will get following expression:

So one factor is (x-1) and now simplifying
we get 2x² - 5x +2 and the factor of 2x² - 5x +2 will be (2x-1)(x-2)
Hence the expression which represents the other factor, or factors, of the given polynomial is option (C) (2x-1)(x+1)
Learn more about Polynomial here:
brainly.com/question/4142886
#SPJ10
Y = kx
Plug in what we know:
5 = k(8)
5 = 8k
Divide 8 to both sides:
k = 0.625
Plug this back into the equation along with y = 15:
y = kx
15 = 0.625x
Divide 0.625 to both sides:
x = 24