Answer: They organize, install, and support an organization's computer systems, including local area networks (LANs), wide area networks (WANs), network segments, intranets, and other data communication systems.
Explanation:
Answer:
O(N!), O(2N), O(N2), O(N), O(logN)
Explanation:
N! grows faster than any exponential functions, leave alone polynomials and logarithm. so O( N! ) would be slowest.
2^N would be bigger than N². Any exponential functions are slower than polynomial. So O( 2^N ) is next slowest.
Rest of them should be easier.
N² is slower than N and N is slower than logN as you can check in a graphing calculator.
NOTE: It is just nitpick but big-Oh is not necessary about speed / running time ( many programmers treat it like that anyway ) but rather how the time taken for an algorithm increase as the size of the input increases. Subtle difference.
Answer:
i). Signed magnitude
Five bit representation = 11111
For positive 5 bit representation = 01111 = +15
For negative 5 bit representation = 11111 = -15
ii). One's complement
For positive 5 bit representation = 01111 =+15
For negative 5 bit representation = 10000 = -15
iii). Two's compliment
For positive 5 bit representation = 01111 = -15
For negative 5 bit representation = 10001 = +15
Answer:
It is A: Packet metadata is used to route and reassemble information travelling through the internet.
Explanation:
Step 1: The Internet works by chopping data into chunks called packets. Each packet then moves through the network in a series of hops. Each packet hops to a local Internet service provider (ISP), a company that offers access to the network -- usually for a fee
Step 2: Entering the network
Each packet hops to a local Internet service provider (ISP), a company that offers access to the network -- usually for a fee.
Step 3: Taking flight
The next hop delivers the packet to a long-haul provider, one of the airlines of cyberspace that quickly carrying data across the world.
Step 4: BGP
These providers use the Border Gateway Protocol to find a route across the many individual networks that together form the Internet.
Step 5: Finding a route
This journey often takes several more hops, which are plotted out one by one as the data packet moves across the Internet.
Step 6: Bad information
For the system to work properly, the BGP information shared among routers cannot contain lies or errors that might cause a packet to go off track – or get lost altogether.
Last step: Arrival
The final hop takes a packet to the recipient, which reassembles all of the packets into a coherent message. A separate message goes back through the network confirming successful delivery.