Answer:
Verified
Step-by-step explanation:
Let the 2x2 matrix A be in the form of:
![\left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
Where det(A) = ad - bc # 0 so A is nonsingular:
Then the transposed version of A is
![A^T = \left[\begin{array}{cc}a&c\\b&d\end{array}\right]](https://tex.z-dn.net/?f=A%5ET%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26c%5C%5Cb%26d%5Cend%7Barray%7D%5Cright%5D)
Then the inverted version of transposed A is
![(A^T)^{-1} = \frac{1}{ad - cb} \left[\begin{array}{cc}a&-c\\-b&d\end{array}\right]](https://tex.z-dn.net/?f=%28A%5ET%29%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20cb%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-c%5C%5C-b%26d%5Cend%7Barray%7D%5Cright%5D)
The inverted version of A is:
![A^{-1} = \frac{1}{ad - bc}\left[\begin{array}{cc}a&-b\\-c&d\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-b%5C%5C-c%26d%5Cend%7Barray%7D%5Cright%5D)
The transposed version of inverted A is:
![(A^{-1})^T = \frac{1}{ad - bc}\left[\begin{array}{cc}a&-c\\-b&d\end{array}\right]](https://tex.z-dn.net/?f=%28A%5E%7B-1%7D%29%5ET%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-c%5C%5C-b%26d%5Cend%7Barray%7D%5Cright%5D)
We can see that

So this theorem is true for 2 x 2 matrices
Answer:
(1)3(x+3)
(2)5(x+3)
Step-by-step explanation:
(1) common taking
(2) common taking
Answer:
- 4m - 2r - 25
Step-by-step explanation:
-8m + (-15) + 4m - 2r - 10
- 8m - 15 + 4m - 2r - 10
collect the like terms beginning with the positives
4m - 8m - 2r - 10 - 15
- 4m - 2r - 25
X hour and 7 dollars per hour
x = hour
7(x) is your function
thank you for Anlian for pointing it out.. there is 4 hours
so x = 4
plug in 4 in x. 7(4)
7 x 4 = 28
28 is your answer
hope this helps
Answer:
See below.
Step-by-step explanation:
<u>Simplify</u>
y - 2 = 5(x - 6)
y - 2 = 5x - 30
y = 5x - 28
Points which lie on the line
(6, 2)
(5, -3)
(7, 7)