^ is in the thousadths place so look for the number before it, which is 3. 3 is less than 5 so 6 stays as is so it becomes 1.736
We would need a sample size of 560.
We first calculate the z-score associated. with this level of confidence:
Convert 95% to a decimal: 95% = 95/100 = 0.95
Subtract from 1: 1-0.95 = 0.05
Divide by 2: 0.05/2 = 0.025
Subtract from 1: 1-0.025 = 0.975
Using a z-table (http://www.z-table.com) we see that this is associated with a z-score of 1.96.
The margin of error, ME, is given by:

We want ME to be 4%; 4% = 4/100 = 0.04. Substituting this into our equation, as well as our proportion and z-score,
Answer:
x = 6/7
Step-by-step explanation:
7x/2+5=8
Subtract 5 from each side
7x/2+5-5=8-5
7x/2 = 3
Multiply each side by 2/7
2/7 * 7/2x = 3*2/7
x = 6/7
Answer:
See below.
Step-by-step explanation:
Here's an example to illustrate the method:
f(x) = 3x^2 - 6x + 10
First divide the first 2 terms by the coefficient of x^2 , which is 3:
= 3(x^2 - 2x) + 10
Now divide the -2 ( in -2x) by 2 and write the x^2 - 2x in the form
(x - b/2)^2 - b/2)^2 (where b = 2) , which will be equal to x^2 - 2x in a different form.
= 3[ (x - 1)^2 - 1^2 ] + 10 (Note: we have to subtract the 1^2 because (x - 1)^2 = x^2 - 2x + 1^2 and we have to make it equal to x^2 - 2x)
= 3 [(x - 1)^2 -1 ] + 10
= 3(x - 1)^2 - 3 + 10
= <u>3(x - 1)^2 + 7 </u><------- Vertex form.
In general form the vertex form of:
ax^2 + bx + c = a [(x - b/2a)^2 - (b/2a)^2] + c .
This is not easy to commit to memory so I suggest the best way to do these conversions is to remember the general method.
Answer:
x = 14 is your answer
Step-by-step explanation:
76 = 7x-22, so to figure it out, you first move -22 to the other side and get
76+22 = 7x.
add them together and you get 98 = 7x
7x would be your equation, so divide 98 by 7 and you get your solution
x = 14 is your answer