1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
3 years ago
10

What is 56.398 rounded to the nearest tenth

Mathematics
2 answers:
OLga [1]3 years ago
8 0
The answer is 56.4 since 3 is in the tenths place 9 is greater than 5 so it’s rounded
Ratling [72]3 years ago
4 0

The decimal place to the right of the tenths place is the hundredths place. The digit in that place is 9.

When the digit to the right of the place you're rounding to is more than 4, you increase the digit in the rounding place by 1.

Here, we have the hundredths digit is 9, which is more than 4, so we increase the tenths digit by 1. The rounded number is

... 56.4

_____

Another way to get there is to add 5 in the hundredths place (the place to the right of the one you're rounding to). When you do that, you get 56.448. Now, throw away all the digits to the right of the one you're rounding to. This leaves

... 56.4

_ _ _ _ _ _ _

The reason I show this last method is to deal with cases like rounding 56.978. By the first rule, you're increasing the digit 9 by 1, which might be confusing. (it requires a carry into the next digit, making 57.0.) If you add .05 to this number, you get 56.978 +.05 = 57.028. Now when you throw away the digits to the right of the tenths digit, you have 57.0.

You might be interested in
Sin^2x/cos^2 + sinxcscx = sec^2x Identify it, please explain so I know how you did it, thanks
max2010maxim [7]

\frac{sin^2x}{cos^2x} + sin x *cscx\\ tan^2x + \frac{sin x}{sin x} \\ tan^2x + 1\\ sec^2x

\frac{sin^2x}{cos^2x} = tan^2x

csc x = \frac{1}{sinx}

tan^2x + 1 = sec^2x

6 0
3 years ago
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
What is angle A + angle B<br><br> 34°<br> 56°<br> 90°<br> 180°
STALIN [3.7K]

Answer:

a + b = 90°

Step-by-step explanation:

It’s obvious that this is a right angle then

a + b = 90°

6 0
3 years ago
Read 2 more answers
∠5 ​ and​ ​ ∠6 ​ ​are complementary angles. m∠5=13°
Hatshy [7]
Since they are complementary angles, then the sum of the measure of both angles is 90
So, M/_5 + m/_6 = 90
13+ X = 90
x=77
measure of angle 6 is 77
6 0
3 years ago
Read 2 more answers
PLEASE HELP WILL GIVE BRAINLIEST!!!!!!!!!
Ann [662]

Answer:

D

Step-by-step explanation:

D is on the same plane as A, B, and C

4 0
3 years ago
Read 2 more answers
Other questions:
  • (b) Carlos removed 56 fish from his pond over a period of 7 days. He removed the same number
    7·1 answer
  • Round 96.466 to the nearest hundredth=
    13·2 answers
  • PLEASE HELP ME WILL MARK BRAINLIEST
    14·1 answer
  • Taylor has $97.23 in her checking account.She uses her debit card to spend $29.74 and then deposits $118.08 into her account.Wha
    5·2 answers
  • If I was 2 years old, and my sister was half my age. How old would my sister be?
    11·2 answers
  • Twenty students from Sherman High School were accepted at Wallaby University. Of
    9·1 answer
  • Identify the highest degree/order of the expression:
    9·2 answers
  • EASY question: Show steps for brainliest &lt;3
    9·1 answer
  • The diameter of the Sun is about 1.4 x 106 km. The diameter of the planet
    9·1 answer
  • The distance around the edge of a circular pond is 88m. The radius,in meters,is?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!