1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
2 years ago
10

3 ½ + 1 1/3 help me out I’ll give you v bucks

Mathematics
2 answers:
AnnyKZ [126]2 years ago
6 0
7 1/6 is the answer
Hope this help!
Fortnight is garbage, no one wants your v bucks
ratelena [41]2 years ago
5 0

Answer:

(3 * (1 / 2)) + 1 1/3 = 2.83333333

Step-by-step explanation:

Hope this answer helps you :)

You might be interested in
Some please help!!!...................
sukhopar [10]

Answer:

should be 5, but seems too easy tbh

5 0
3 years ago
Find lim h->0 f(9+h)-f(9)/h if f(x)=x^4 a. 23 b. -2916 c. 2916 d. 2925
Svetach [21]

\displaystyle\lim_{h\to0}\frac{f(9+h)-f(9)}h = \lim_{h\to0}\frac{(9+h)^4-9^4}h

Carry out the binomial expansion in the numerator:

(9+h)^4 = 9^4+4\times9^3h+6\times9^2h^2+4\times9h^3+h^4

Then the 9⁴ terms cancel each other, so in the limit we have

\displaystyle \lim_{h\to0}\frac{4\times9^3h+6\times9^2h^2+4\times9h^3+h^4}h

Since <em>h</em> is approaching 0, that means <em>h</em> ≠ 0, so we can cancel the common factor of <em>h</em> in both numerator and denominator:

\displaystyle \lim_{h\to0}(4\times9^3+6\times9^2h+4\times9h^2+h^3)

Then when <em>h</em> converges to 0, each remaining term containing <em>h</em> goes to 0, leaving you with

\displaystyle\lim_{h\to0}\frac{f(9+h)-f(9)}h = 4\times9^3 = \boxed{2916}

or choice C.

Alternatively, you can recognize the given limit as the derivative of <em>f(x)</em> at <em>x</em> = 9:

f'(x) = \displaystyle\lim_{h\to0}\frac{f(x+h)-f(x)}h \implies f'(9) = \lim_{h\to0}\frac{f(9+h)-f(9)}h

We have <em>f(x)</em> = <em>x</em> ⁴, so <em>f '(x)</em> = 4<em>x</em> ³, and evaluating this at <em>x</em> = 9 gives the same result, 2916.

8 0
3 years ago
A line of best fit predicts that when x equals 35, y will equal 34.785, but y
Dafna1 [17]

Answer:

c

Step-by-step explanation:

c

4 0
3 years ago
What will be the amount in an account with initial principal $9000 il interest is compounded continuously at an annual rate of 3
Sindrei [870]

Answer:

$11,258.30

Step-by-step explanation:

6 0
3 years ago
For the following telescoping series, find a formula for the nth term of the sequence of partial sums {Sn}. Then evaluate limn→[
Ivenika [448]

Answer:

The following are the solution to the given points:

Step-by-step explanation:

Given value:

1) \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\2) \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}

Solve point 1 that is \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\:

when,

k= 1 \to  s_1 = \frac{1}{1+1} - \frac{1}{1+2}\\\\

                  = \frac{1}{2} - \frac{1}{3}\\\\

k= 2 \to  s_2 = \frac{1}{2+1} - \frac{1}{2+2}\\\\

                  = \frac{1}{3} - \frac{1}{4}\\\\

k= 3 \to  s_3 = \frac{1}{3+1} - \frac{1}{3+2}\\\\

                  = \frac{1}{4} - \frac{1}{5}\\\\

k= n^  \to  s_n = \frac{1}{n+1} - \frac{1}{n+2}\\\\

Calculate the sum (S=s_1+s_2+s_3+......+s_n)

S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....\frac{1}{n+1}-\frac{1}{n+2}\\\\

   =\frac{1}{2}-\frac{1}{5}+\frac{1}{n+1}-\frac{1}{n+2}\\\\

When s_n \ \ dt_{n \to 0}

=\frac{1}{2}-\frac{1}{5}+\frac{1}{0+1}-\frac{1}{0+2}\\\\=\frac{1}{2}-\frac{1}{5}+\frac{1}{1}-\frac{1}{2}\\\\= 1 -\frac{1}{5}\\\\= \frac{5-1}{5}\\\\= \frac{4}{5}\\\\

\boxed{\text{In point 1:} \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2} =\frac{4}{5}}

In point 2: \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}

when,

k= 1 \to  s_1 = \frac{1}{(1+6)(1+7)}\\\\

                  = \frac{1}{7 \times 8}\\\\= \frac{1}{56}

k= 2 \to  s_1 = \frac{1}{(2+6)(2+7)}\\\\

                  = \frac{1}{8 \times 9}\\\\= \frac{1}{72}

k= 3 \to  s_1 = \frac{1}{(3+6)(3+7)}\\\\

                  = \frac{1}{9 \times 10} \\\\ = \frac{1}{90}\\\\

k= n^  \to  s_n = \frac{1}{(n+6)(n+7)}\\\\

calculate the sum:S= s_1+s_2+s_3+s_n\\

S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(n+6)(n+7)}\\\\

when s_n \ \ dt_{n \to 0}

S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(0+6)(0+7)}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{6 \times 7}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{42}\\\\=\frac{45+35+28+60}{2520}\\\\=\frac{168}{2520}\\\\=0.066

\boxed{\text{In point 2:} \sum ^{\infty}_{k = 1} \frac{1}{(n+6)(n+7)} = 0.066}

8 0
3 years ago
Other questions:
  • What are the values of a, b, and c in the quadratic equation 0 = x2 – 3x – 2?
    10·1 answer
  • The slope of a given line is 1/3 . What is the slope of a line that is perpendicular to the given line? Type a numerical answer
    14·1 answer
  • Marianne buys a house for $150,000, and the value of the house increases at a rate of 1.2% per year. How much will the house be
    15·1 answer
  • At summer camp the ratio of boys to girls was 7:4. If there was 63 boys how many girls were there.
    11·1 answer
  • Simplify the expression.<br> (-2-2i)(-4+6i)
    14·2 answers
  • kalvin's mother tells him that the chance of a coin showing heads when he tosses it is 1/2. does this mean that every time he to
    8·1 answer
  • Help I need homework pls help mee​
    12·2 answers
  • Find the equation of a line perpendicular to 4x-y=4 that contains the points (0,3)​
    8·1 answer
  • What is the value of X?<br> Х<br> у<br> 60°<br> 5
    14·1 answer
  • ??????????????????????????????????????????????????????????/
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!