Answer:
-55
Step-by-step explanation:
2nd term=> -1 + -2 × (2 - 1)
3rd term=> -1 + -2 × (3 - 1)
:
28th term=> -1 + -2 × (28 - 1)
=> -1 - 54 = -55
I believe it’s 361, tell me if I’m wrong though!
The first term of the arithmetic progression exists at 10 and the common difference is 2.
<h3>
How to estimate the common difference of an arithmetic progression?</h3>
let the nth term be named x, and the value of the term y, then there exists a function y = ax + b this formula exists also utilized for straight lines.
We just require a and b. we already got two data points. we can just plug the known x/y pairs into the formula
The 9th and the 12th term of an arithmetic progression exist at 50 and 65 respectively.
9th term = 50
a + 8d = 50 ...............(1)
12th term = 65
a + 11d = 65 ...............(2)
subtract them, (2) - (1), we get
3d = 15
d = 5
If a + 8d = 50 then substitute the value of d = 5, we get
a + 8
5 = 50
a + 40 = 50
a = 50 - 40
a = 10.
Therefore, the first term is 10 and the common difference is 2.
To learn more about common differences refer to:
brainly.com/question/1486233
#SPJ4
2x+14=60(vertical)
2x=46
x=23