Given bivariate data, first determine which is the independent variable, x, and which is the dependent variable, y. Enter the data pairs into the regression calculator. Substitute the value for one variable into the equation for the regression line produced by the calculator, and then predict the value of the other variable.
14.
Angles 4 and 6 are supplementary, because they are on the same line. Supplementary angles add up to 180 degrees, and a line must be 180 degrees.
15.
Angles 1 and 8 are congruent, because they are alternate exterior angles
16.
m = y2 - y1 / x2 - x1
m = 7 - 2 / 4 - 5
m = 5 / -1
m = -5
17.
m = 3 - 3 / 7 - (-5)
m = 0 / 12
m = 0
18.
m = 1 - (-2) / 5 - (-4)
m = 3 / 9
m = 1/3
19.
A = (0, 3) - B = (3,0)
m = 0 - 3 / 3 - 0
m = -3 / 3
<em>m = -1</em>
C = (0, -2) - D = (4, 2)
m = 2 - (-2) / 4 - 0
m = 4 / 4
<em>m = 1</em>
Perpendicular, because the slopes are opposite reciprocals.
20.
E = (1, 2) - F = (0, 0)
m = 0 - 2 / 0 - 1
m = -2 / -1
<em>m = 2</em>
G = (1, -3) - H = (3, 0)
m = 0 - (-3) / 3 - 1
<em>m = 3 / 2</em>
Neither, because the slopes are different.
21.
I = (0, 1) - J = (2, -4)
m = -4 - 1 / 2 - 0
<em>m = -5/2</em>
K = (-1, -2) - L = (4, 0)
m = 0 - (-2) / 4 - (-1)
<em>m = 2/5</em>
Perpendicular, because the slopes are opposite reciprocals.
22.
M = (-2, 2) - N = (2, 2)
Horizontal line
<em>m = 0</em>
O = (3, 0) - P = (-3, 0)
Horizontal line
<em>m = 0
</em>Parallel, because the slopes are the same.
<em>
</em>23.
Angle 2 is congruent to angle 1 because of the alternate exterior angle theorem.
Angle 1 is congruent to angle 3 because of the vertical angle theorem.
Angle 2 is congruent to angle 3 because of substitution.
Line l is parallel to line m because the corresponding angles are congruent.
Answer:
The area of the black square is equal to the sum of the areas of the gray squares.
True. According to the Commutative Property <span>of addition, the numbers could be put in any order and still result in the same answer. </span>
Answer:
3
Step-by-step explanation:
P is the in-center
⇒PA=PE=PD because they are in-radius of the in-circle
We know that, tangent segments drawn from a point outside the circle are always equal in length
⇒DK=EK=7.2
In right triangle PKE,
using Pythagoras' Theorem : 
⇒
⇒
⇒
⇒
Therefore, 