Answer:
a) 9*π or approx 28.26
b) ∡CRB=100°
Step-by-step explanation:
As known for secants crossing each other inside the circle is coorect the following:
BR*RD=AR*RC
=> 3*RD=4*4.5
RD=6
The diameter of the circle with center P is BD=BR+RD=3+6=9
So the radius of the circle is D/2=9/2=4.5
As known the circumference of any circle can be calculated as
C=2*π*r , where r is the circle's radius
So C=2*4.5*π=9*π= approx 3.14*9=28.26
b) ∡CRB=∡ARD= (arcBC+arcAD), where arcBC and arcAD smaller arcs
BD is the circle's diameter, so arc BD=180°
So arcBC=180°-arcCOD=180°-100°=80°
Similarly arcBD=180°
arcAD=180°-arcBSA=180°-60°=120°
∡CRB= (80°+120°)/2=100°
In the question it is already given that Eric drove for 439.92 miles on 15.6 gallons. It is required to find the distance traveled on 39.7 gallons of gas. Also we have to find the answer to the nearest hundredth.
Then,
In 15.6 gallons Eric can drive for a distance = 439.92 miles
In 39.7 gallons Eric can drive for a distance = [(439.92/15.6) * 39.7] miles
= 1119.54 miles
So the total distance traveled by Eric is 1120 miles with 39.7 gallons of gas. The answer has been calculated to the nearest hundredth.
For this case we model the problem as a rectangle.
The area of the rectangle is given by:
A = (w) * (l)
Where,
w: width
l: long
Substituting values we have:
4800 = (w) * ((1 1/3) * w)
We rewrite:
w ^ 2 = 4800 / (1 1/3)
w ^ 2 = 3600
w = root (3600)
w = 60 in
The long will be then:
l = (1 1/3) * w
l = (1 1/3) * (60)
l = 80 in
Answer:
the dimensions of the quilt are:
w = 60 in
l = 80 in
Answer: It would be 12 2/9
Step-by-step explanation: 4/9-2/9=2/9 Hope this helps!:)
<span>The maxima of a differential equation can be obtained by
getting the 1st derivate dx/dy and equating it to 0.</span>
<span>Given the equation h = - 2 t^2 + 12 t , taking the 1st derivative
result in:</span>
dh = - 4 t dt + 12 dt
<span>dh / dt = 0 = - 4 t + 12 calculating
for t:</span>
t = -12 / - 4
t = 3
s
Therefore the maximum height obtained is calculated by
plugging in the value of t in the given equation.
h = -2 (3)^2 + 12 (3)
h =
18 m
This problem can also be solved graphically by plotting t
(x-axis) against h (y-axis). Then assigning values to t and calculate for h and
plot it in the graph to see the point in which the peak is obtained. Therefore
the answer to this is:
<span>The ball reaches a maximum height of 18
meters. The maximum of h(t) can be found both graphically or algebraically, and
lies at (3,18). The x-coordinate, 3, is the time in seconds it takes the ball
to reach maximum height, and the y-coordinate, 18, is the max height in meters.</span>