Answer:
A), B) and D) are true
Step-by-step explanation:
A) We can prove it as follows:

B) When you compute the product Ax, the i-th component is the matrix of the i-th column of A with x, denote this by Ai x. Then, we have that
. Now, the colums of A are orthonormal so we have that (Ai x)^2=x_i^2. Then
.
C) Consider
. This set is orthogonal because
, but S is not orthonormal because the norm of (0,2) is 2≠1.
D) Let A be an orthogonal matrix in
. Then the columns of A form an orthonormal set. We have that
. To see this, note than the component
of the product
is the dot product of the i-th row of
and the jth row of
. But the i-th row of
is equal to the i-th column of
. If i≠j, this product is equal to 0 (orthogonality) and if i=j this product is equal to 1 (the columns are unit vectors), then
E) Consider S={e_1,0}. S is orthogonal but is not linearly independent, because 0∈S.
In fact, every orthogonal set in R^n without zero vectors is linearly independent. Take a orthogonal set
and suppose that there are coefficients a_i such that
. For any i, take the dot product with u_i in both sides of the equation. All product are zero except u_i·u_i=||u_i||. Then
then
.
Answer:
The Answer is D
Step-by-step explanation:
Answer:
40 Nickels
Step-by-step explanation:
Answer:
83.79 cm²
Step-by-step explanation:
(please refer to attached)
recall that the volume of a cone is given by
V = (1/3) π r² h
where
r = radius = given as 4 cm
h = height = given as 5 cm
assume π = 3.142
substituting the values into the formula:
V = (1/3) π r² h
V = (1/3) (3.14) (4)² (5)
V = 83.79 cm²
Answer:
150 pens
Step-by-step explanation:
1. 75% = 0.75
2. 200 * 0.75 = 150 pens