Answer:
<u>b) true for one value of x</u>
<u>a) true for all values of x</u>
<u>c) true for no values of x</u>
sorry if they are wrong
Step-by-step explanation:
2x + 8 = -3.5x + 19
a) true for all values of x
<u>b) true for one value of x</u>
<u></u>
c) true for no values of x
9(x - 2) = 7x + 5
<u>a) true for all values of x</u>
<u></u>
b) true for one value of x
c) true for no values of x
3(3x + 2) - 2x = 7x + 6
a) true for all values of x
b) true for one value of x
<u>c) true for no values of x</u>
<u></u>
<u></u>
The given matrix equation is,
.
Multiplying the matrices with the scalars, the given equation becomes,
![\left[\begin{array}{cc}1.5x&9\\12&6\end{array}\right] +\left[\begin{array}{cc}y&4y\\3y&2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1.5x%269%5C%5C12%266%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dy%264y%5C%5C3y%262y%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dz%26z%5C%5C6z%262%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%20%20)
Adding the matrices,
![\left[\begin{array}{cc}1.5x+y&9+4y\\12+3y&6+2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1.5x%2By%269%2B4y%5C%5C12%2B3y%266%2B2y%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dz%26z%5C%5C6z%262%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%20)
Matrix equality gives,

Solving the equations together,

We can see that the equations are not consistent.
There is no solution.
Answer:
26880 ways
<em></em>
Step-by-step explanation:
Given



Required
Determine the number of ways 3 toppings and 3 cheese can be selected
The number of crusts to be selected was not stated. So, I'll assume 1 crust to be selected from 4.
This can be done in
ways
For the toppings:
3 can be selected from 10 in
ways
For the cheeses:
3 can be selected from 8 in
ways
Total number of selection is:

Apply combination formula:







<em>Hence, there are 26880 ways</em>