The <em>first</em> eight terms of the sequence are 27, 27, 39, 87, 117.378, 147.755, 178.132 and 208.509.
<h3>
Determination of a given set of successive values of a sequence</h3>
By (1) we have that
, and we simplify the system of equations as follows:

(2b)
(3b)
(4b)
By (2b), we simplify the system of equations once again:
(3c)
(4c)
And by equalising (3c) and (4c) we have an expression in terms of
:
![\frac{12}{[2\cdot (1-r)+(r^{2}-1)]} = \frac{60}{[3\cdot (1-r)+(r^{3}-1)]}](https://tex.z-dn.net/?f=%5Cfrac%7B12%7D%7B%5B2%5Ccdot%20%281-r%29%2B%28r%5E%7B2%7D-1%29%5D%7D%20%3D%20%5Cfrac%7B60%7D%7B%5B3%5Ccdot%20%281-r%29%2B%28r%5E%7B3%7D-1%29%5D%7D)
![12\cdot [3\cdot (1-r)+(r^{3}-1)] = 60\cdot [2\cdot (1-r) + (r^{2}-1)]](https://tex.z-dn.net/?f=12%5Ccdot%20%5B3%5Ccdot%20%281-r%29%2B%28r%5E%7B3%7D-1%29%5D%20%3D%2060%5Ccdot%20%5B2%5Ccdot%20%281-r%29%20%2B%20%28r%5E%7B2%7D-1%29%5D)



(5)
The roots of this <em>third order</em> polynomial are:
,
and
. Since
must be a <em>real</em> number, then
.
By (4c) we have the value of
:


By (2b) we find the value of
:


And by (1) we find the value of
:



The <em>first</em> eight terms are calculated below:




![n_{5} = [-4.13 + 4\cdot (30.377)]+(31.130)\cdot (0.0242)^{4} = 117.378](https://tex.z-dn.net/?f=n_%7B5%7D%20%3D%20%5B-4.13%20%2B%204%5Ccdot%20%2830.377%29%5D%2B%2831.130%29%5Ccdot%20%280.0242%29%5E%7B4%7D%20%3D%20117.378)
![n_{6} = [-4.13+5\cdot (30.377)+(31.130)\cdot (0.0242)^{5}] = 147.755](https://tex.z-dn.net/?f=n_%7B6%7D%20%3D%20%5B-4.13%2B5%5Ccdot%20%2830.377%29%2B%2831.130%29%5Ccdot%20%280.0242%29%5E%7B5%7D%5D%20%3D%20147.755)
![n_{7} = [-4.13+6\cdot (30.377)\cdot (31.130)\cdot (0.0242)^{6}] = 178.132](https://tex.z-dn.net/?f=n_%7B7%7D%20%3D%20%5B-4.13%2B6%5Ccdot%20%2830.377%29%5Ccdot%20%2831.130%29%5Ccdot%20%280.0242%29%5E%7B6%7D%5D%20%3D%20178.132)
![n_{8} = [-4.13+7\cdot (30.377)\cdot (31.130)\cdot (0.0242)^{7}] = 208.509](https://tex.z-dn.net/?f=n_%7B8%7D%20%3D%20%5B-4.13%2B7%5Ccdot%20%2830.377%29%5Ccdot%20%2831.130%29%5Ccdot%20%280.0242%29%5E%7B7%7D%5D%20%3D%20208.509)
The <em>first</em> eight terms of the sequence are 27, 27, 39, 87, 117.378, 147.755, 178.132 and 208.509. 
<h3>
Remark</h3>
<em>The statement present typing mistakes and is poorly formatted. Correct form is shown below:</em>
<em />
<em>The first four terms of an arithmetic sequence are: </em>
<em>, </em>
<em>, </em>
<em>, </em>
<em>. The first four terms of another sequence are: </em>
<em>, </em>
<em>, </em>
<em>, </em>
<em>. The eight terms satisfy:</em>
<em />
<em />
<em> </em><em>(1)</em>
<em></em>
<em> </em><em>(2)</em>
<em></em>
<em> </em><em>(3)</em>
<em />
<em> </em><em>(4)</em>
<em></em>
<em>By using the substitution </em>
<em>, or otherwise, find the all eight terms. </em>
To learn more on sequences, we kindly invite to check this verified question: brainly.com/question/21961097