Answer:
both these equations are the examples of associative property.
#1 is the example of associative property with respect to multiplication.
#2 is the example of associative property with respect to addition.
Answer:
I would say its D. 9.00
Step-by-step explanation:
A. You may set the variables in either order. But for argument sake, let's set as follows:
x = Amount of bookshelves
y = Amount of tables
B. Because of the amount of things you need to make, the following is an inequality using those variables.
x + y > 25
Plus you can determine a second inequality based on the amount of money that you have to spend.
20x + 45y < 675
Finally you may also add in that each value must be greater than or equal to zero, since they cannot have negative tables.
C. By solving the system and looking at basic constraints when graphed, you can see the feasible region has 4 vertices.
(0,0)
(18, 7)
(0, 15)
(33.75, 0) or (33, 0) if you insist on rounding.
Answer:
(a) The sample sizes are 6787.
(b) The sample sizes are 6666.
Step-by-step explanation:
(a)
The information provided is:
Confidence level = 98%
MOE = 0.02
n₁ = n₂ = n

Compute the sample sizes as follows:



Thus, the sample sizes are 6787.
(b)
Now it is provided that:

Compute the sample size as follows:

![n=\frac{(z_{\alpha/2})^{2}\times [\hat p_{1}(1-\hat p_{1})+\hat p_{2}(1-\hat p_{2})]}{MOE^{2}}](https://tex.z-dn.net/?f=n%3D%5Cfrac%7B%28z_%7B%5Calpha%2F2%7D%29%5E%7B2%7D%5Ctimes%20%5B%5Chat%20p_%7B1%7D%281-%5Chat%20p_%7B1%7D%29%2B%5Chat%20p_%7B2%7D%281-%5Chat%20p_%7B2%7D%29%5D%7D%7BMOE%5E%7B2%7D%7D)
![=\frac{2.33^{2}\times [0.45(1-0.45)+0.58(1-0.58)]}{0.02^{2}}\\\\=6665.331975\\\\\approx 6666](https://tex.z-dn.net/?f=%3D%5Cfrac%7B2.33%5E%7B2%7D%5Ctimes%20%5B0.45%281-0.45%29%2B0.58%281-0.58%29%5D%7D%7B0.02%5E%7B2%7D%7D%5C%5C%5C%5C%3D6665.331975%5C%5C%5C%5C%5Capprox%206666)
Thus, the sample sizes are 6666.
Answer:

Step-by-step explanation:
First, you need to divide everything by 6.
Then you put everything in a radical to get this:
