Answer:
Electron transfer to from cytochrome c to molecular Oxygen in the process of oxidative phosphorylation
Explanation:
Cytochrome c is a protein which is involved in the electron transport chain for the production of ATP molecules during then process of respiration. It a soluble protein found in the intermembrane space of the mitochondria. It receives electrons from ubiquinone at Complex III of the electron transport chain and transfers this electron to molecular oxygen through its interaction with complex IV or cytochrome c oxidase, reducing molecular oxygen to water.
If the interaction of cytochrome c with cytochrome c oxidase is inhibited, the process of elctron transfer to oxygen will be inhibited and, so ATP synthesis will cease.
Ultimately, respiration will be inhibited resulting in death of the organism. For example, cyanide inhibits cytochrome c oxidase resulting in death of the organism poisoned with cyanide.
It was closely linked to the natural world
Answer: Option C) leaves
Explanation:
Autotrophs including green plants consists of cells that have chloroplasts, these chloroplasts possess a green coloured pigment called chlorophyll that are abundant in the leaves, and helps in receiving trapping sun light among other simple inorganic molecules like atmospheric carbon dioxide and water, necessary for the synthesis of sugar molecules during the process of photosynthesis.
Thus, the abundant presence of chlorophyll in leaves makes photosynthesis occur more in leaves
The correct answer is
metabolic acidosis.
Metabolic acidosis is a condition that occurs when there are excessive quantities of acid in the body. Another cause is when the kidneys are not removing enough acid (H+) from the body because of the inability to form bicarbonate (HCO3−). Metabolic acidosis can lead to acidemia (low blood pH).