<u>Solution-</u>
The two parabolas are,

By solving the above two equations we calculate where the two parabolas meet,

Given the symmetry, the area bounded by the two parabolas is twice the area bounded by either parabola with the x-axis.
![\therefore Area=2\int_{-c}^{c}y.dx= 2\int_{-c}^{c}(16x^2-c^2).dx\\=2[\frac{16}{3}x^3-c^2x]_{-c}^{ \ c}=2[(\frac{16}{3}c^3-c^3)-(-\frac{16}{3}c^3+c^3)]=2[\frac{32}{3}c^3-2c^3]=2(\frac{26c^3}{3})\\=\frac{52c^3}{3}](https://tex.z-dn.net/?f=%5Ctherefore%20Area%3D2%5Cint_%7B-c%7D%5E%7Bc%7Dy.dx%3D%202%5Cint_%7B-c%7D%5E%7Bc%7D%2816x%5E2-c%5E2%29.dx%5C%5C%3D2%5B%5Cfrac%7B16%7D%7B3%7Dx%5E3-c%5E2x%5D_%7B-c%7D%5E%7B%20%5C%20c%7D%3D2%5B%28%5Cfrac%7B16%7D%7B3%7Dc%5E3-c%5E3%29-%28-%5Cfrac%7B16%7D%7B3%7Dc%5E3%2Bc%5E3%29%5D%3D2%5B%5Cfrac%7B32%7D%7B3%7Dc%5E3-2c%5E3%5D%3D2%28%5Cfrac%7B26c%5E3%7D%7B3%7D%29%5C%5C%3D%5Cfrac%7B52c%5E3%7D%7B3%7D)
![So \frac{52c^3}{3}=\frac{250}{3}\Rightarrow c=\sqrt[3]{\frac{250}{52}}=1.68](https://tex.z-dn.net/?f=So%20%5Cfrac%7B52c%5E3%7D%7B3%7D%3D%5Cfrac%7B250%7D%7B3%7D%5CRightarrow%20c%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B250%7D%7B52%7D%7D%3D1.68)
Answer:
d) none
hope it helps
<em>plz</em><em> </em><em>mark</em><em> </em><em>brainliest✌️</em><em>✌️</em>
The curve can be described by
Answer:
slope = - 
Step-by-step explanation:
calculate the slope m using the slope formula
m = 
with (x₁, y₁ ) = (3, 2 ) and (x₂, y₂ ) = (- 3, 4 )
m =
=
= - 