Answer:
x=9
Step-by-step explanation:
25-16=9
you subtract 16 from both sides
Answer:
hope it helps you
Step-by-step explanation:
To make such a frequency distribution table, first, write the class intervals in one column. Next, tally the numbers in each category based on the number of times it appears. Finally, write the frequency in the final column. A frequency distribution table drawn above is called a grouped frequency distribution table.
Each person gets about 9.75 ounces of ice cream
Given:
A(-5,4)
B(3,4)
C(3,-5)
So point D is:
so point D is (-5,-5)
For AB is
Distance between two point is:
![\begin{gathered} (x_1,y_1)and(x_2,y_2) \\ D=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%28x_1%2Cy_1%29and%28x_2%2Cy_2%29%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D%20%5Cend%7Bgathered%7D)
so distance between A(-5,4) and B(3,4) is:
![\begin{gathered} D=\sqrt[]{(3-(-5))^2+(4-4)^2} \\ =\sqrt[]{(8)^2+0^2} \\ =8 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%283-%28-5%29%29%5E2%2B%284-4%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%288%29%5E2%2B0%5E2%7D%20%5C%5C%20%3D8%20%5Cend%7Bgathered%7D)
So AB is 8 unit apart.
For B(3,4) and C(3,-5).
![\begin{gathered} D=\sqrt[]{(3-3)^2+(-5-4)^2} \\ =\sqrt[]{0^2+(-9)^2} \\ =9 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%283-3%29%5E2%2B%28-5-4%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B0%5E2%2B%28-9%29%5E2%7D%20%5C%5C%20%3D9%20%5Cend%7Bgathered%7D)
So BC is 9 unit apart.
For fourth bush point is (-5,-5) it left of point C(3,-5) is:
![\begin{gathered} D=\sqrt[]{(3-(-5))^2+(-5-(-5))^2} \\ =\sqrt[]{(8)^2+0^2} \\ =8 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%283-%28-5%29%29%5E2%2B%28-5-%28-5%29%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%288%29%5E2%2B0%5E2%7D%20%5C%5C%20%3D8%20%5Cend%7Bgathered%7D)
so fourth bush is 8 unit left of C.
For fourth bush(-5,-5) below to point A(-5,4)
![\begin{gathered} D=\sqrt[]{(-5-(-5))^2+(4-(-5))^2} \\ =\sqrt[]{0^2+9^2} \\ =9 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%28-5-%28-5%29%29%5E2%2B%284-%28-5%29%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B0%5E2%2B9%5E2%7D%20%5C%5C%20%3D9%20%5Cend%7Bgathered%7D)
so fourth bush 9 units below of A.
Using the quadratic formula