<span>Answer: </span><span>45.2548339959</span>
Answer:
The slope would be -x
Step-by-step explanation:
The second number in the equations y=mx+b is always the slope unless you have to plug in number and do all kinds of stuff but that's not whats in the problem now.
So the rule with multiplying exponents of the same base is
. Apply this rule here:

Next, the rule with converting negative exponents into positive ones is
. Apply this rule here:

<u>Your final answer is 1/49.</u>
<h2>------------------------------------------------</h2>
So an additional rule when it comes to exponents is ![x^{\frac{m}{n}}=\sqrt[n]{x^m}](https://tex.z-dn.net/?f=%20x%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%3D%5Csqrt%5Bn%5D%7Bx%5Em%7D%20)
In this case, your fractional exponent, x^9/7, would be converted to
. However, I had just realized you can further expand this.
Remember the rule I had mentioned earlier about multiplying exponents of the same base? Well, you can apply it here:
![\sqrt[7]{x^9}=\sqrt[7]{x^7*x^2}=x\sqrt[7]{x^2}](https://tex.z-dn.net/?f=%20%5Csqrt%5B7%5D%7Bx%5E9%7D%3D%5Csqrt%5B7%5D%7Bx%5E7%2Ax%5E2%7D%3Dx%5Csqrt%5B7%5D%7Bx%5E2%7D%20)
Your final answer would be ![x\sqrt[7]{x^2}](https://tex.z-dn.net/?f=%20x%5Csqrt%5B7%5D%7Bx%5E2%7D%20)
Answer:
4
Step-by-step explanation:
Answer:
As far as i know you should go for LCM that would be more convenient and easy to do