Slope point form:
We need the slope "m" and a point (x₀,y₀)
y-y₀=m(x-x₀)
1)
we calculate the slope "m".
Given two points:
(x₁,y₁)
(x₂,y₂)
the slope "m" is:
m=(y₂-y₁) / (x₂-x₁)
In this case:
(4,10)
(6,11)
m=(11-10) / (6-4)=1/2
Now, we calculate the solpe point form.
(4,10)
m=1/2
y-y₀=m(x-x₀)
y-10=(1/2)(x-4)
we make the standard form
y-10=x/2 - 2
Lowest common multiple=2
2y-20=x-4
-x+2y=-4+20
-x+2y=16
Answer: -x+2y=16


- <u>Distance </u><u>between </u><u>the </u><u>house </u><u>and </u><u>tower </u><u>is </u><u>3</u><u>5</u><u> </u><u>m</u>
- <u>The </u><u>height </u><u>of </u><u>the </u><u>tower </u><u>is </u><u>6</u><u>0</u><u> </u><u>m </u>
- <u>The </u><u>height </u><u>of </u><u>the </u><u>house </u><u>is </u><u>2</u><u>5</u><u> </u><u>m</u>

- <u> </u><u>Height</u><u> </u><u>of </u><u>the </u><u>house </u><u>is</u><u> </u><u>2</u><u>5</u><u>m</u>


<u>Therefore</u><u>, </u>



<u>Now</u><u>, </u><u> </u><u>In </u><u>Right </u><u>angled </u><u>ABC</u>





Expanding the limit, we get (x^2+2x∆x+∆x^2-2x-2∆x+1-x^2+2x-1)/<span>∆x
Crossing the 1s , the 2xs, and the x^2s out, we get
(2x</span>∆x+∆x^2-2∆x)/<span>∆x
Dividing the </span><span>∆x, we get
2x+</span><span>∆x-2.
Making the limit of </span><span>∆x=0, we get 2x-2.</span>
The answer I got is 17x-70/5
Answer:
15+15+15+2+2+2+2=(3×15)+(4×2)=45+8=53