A process that involves rearrangement of the molecular or ionic structure of a substance, as opposed to a change in physical form or a nuclear reaction.
<u>Ans: Acetic acid = 90.3 mM and Sodium acetate = 160 mM</u>
Given:
Acetic Acid/Sodium Acetate buffer of pH = 5.0
Let HA = acetic acid
A- = sodium acetate
Total concentration [HA] + [A-] = 250 mM ------(1)
pKa(acetic acid) = 4.75
Based on Henderson-Hasselbalch equation
pH = pKa + log[A-]/[HA]
[A-]/[HA] = 10^(pH-pKa) = 10^(5-4.75) = 10^0.25 = 1.77
[A-] = 1.77[HA] -----(2)
From (1) and (2)
[HA] + 1.77[HA] = 250 mM
[HA] = 250/2.77 = 90.25 mM
[A-] = 1.77(90.25) = 159.74 mM
Answer:
Sodium chloride is an ionic compound which makes it stronger and have a higher melting and boiling point. Candle wax is a covalent compound so it has a low melting point.
Explanation:
<h2><u><em>
PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
Answer:
3.25×10²⁴ molecules
Explanation:
From the question given above, the following data were obtained:
Mass of H₂O = 97.2 g
Number of molecule of H₂O =?
From Avogadro's hypothesis, we understood that:
1 mole of H₂O = 6.02×10²³ molecules
Next, we shall determine the mass of 1 mole of H₂O. This can be obtained as follow:
1 mole of H₂O = (2×1) + 16
= 2 + 16
= 18 g
Thus,
18 g of H₂O = 6.02×10²³ molecules
Finally, we shall determine the number of molecules in 97.2 g of H₂O. This can be obtained as follow:
18 g of H₂O = 6.02×10²³ molecules
Therefore,
97.2 g of H₂O = 97.2 × 6.02×10²³ / 18
97.2 g of H₂O = 3.25×10²⁴ molecules
Thus, 97.2 g of H₂O contains 3.25×10²⁴ molecules.