Let S denote the plane region bounded by the following curves:
1 answer:
The volume of the solid of revolution is approximately 37439.394 cubic units.
<h3>
How to find the solid of revolution enclosed by two functions</h3>
Let be
and
, whose points of intersection are
,
, respectively. The formula for the solid of revolution generated about the y-axis is:
(1)
Now we proceed to solve the integral: 
(2)

![V = 6\pi \left[(y-1)\cdot \ln y\right]\right|_{1}^{e^{35/6}}](https://tex.z-dn.net/?f=V%20%3D%206%5Cpi%20%5Cleft%5B%28y-1%29%5Ccdot%20%5Cln%20y%5Cright%5D%5Cright%7C_%7B1%7D%5E%7Be%5E%7B35%2F6%7D%7D)
![V = 6\pi \cdot \left[(e^{35/6}-1)\cdot \left(\frac{35}{6} \right)-(1-1)\cdot 0\right]](https://tex.z-dn.net/?f=V%20%3D%206%5Cpi%20%5Ccdot%20%5Cleft%5B%28e%5E%7B35%2F6%7D-1%29%5Ccdot%20%5Cleft%28%5Cfrac%7B35%7D%7B6%7D%20%5Cright%29-%281-1%29%5Ccdot%200%5Cright%5D)


The volume of the solid of revolution is approximately 37439.394 cubic units. 
To learn more on solids of revolution, we kindly invite to check this verified question: brainly.com/question/338504
You might be interested in
Answer:

Step-by-step explanation:




Answer:
1/10
Step-by-step explanation:
5*6=30
3*1=3
3/30=1/10
<span>8x4-(2x3+8) divided by 2=25.</span>
10x+2xy+6y I answered this must self and solved it
Anything that is 0.7-1.0 is strong positive.
So the answer is strong positive association