6.66, with a bar on top of the last two sixes
Answer:
Step-by-step explanation:
3C + 8T = 58 ----- (eq1)
5C + 2T = 23 ------(eq2)
Multiply equation (1) by 5 and equation (2) by 3
15C + 40T = 290 -----(eq3)
15C + 6T = 69 ----------(eq4)
Subtract equation (4) from (3)
34T = 221
T = 221/34
T = $6.5
Therefore 1 Table will cost $6 and 5 cents
Solve for (C) in equation (1)
3C + 8T = 58
3C + 8(6.5) = 58
3C + 52 = 58
3C = 58-52
3C = 6
C = 6/3
C = $2
1 Chair will cost $2
Answer:
a. P(X = 0) = 0.02586
b. 
c. 
Step-by-step explanation:
From the given information:
a. If the manufacturer stocks 120 components, what is the probability that the 120 orders can be filled without reordering components?


P(X = 0) = 1 × 1 ( 0.97)¹²⁰ ⁻ ⁰
P(X = 0) = 0.02586
b. ) If the manufacturer stocks 122 components, what is the probability that the 120 orders can be filled without reordering components?
![P(X \leq 2 ) = [ P(X=0) + P(X =1) + P(X = 2) ]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%202%20%29%20%3D%20%5B%20P%28X%3D0%29%20%2B%20P%28X%20%3D1%29%20%2B%20P%28X%20%3D%202%29%20%5D)
![P(X \leq 2 ) = [(^{122}_{0})(0.03)^0 (0.97)^{122-0}+(^{122}_{1})(0.03)^1 (0.97)^{122-1}+(^{122}_{2})(0.03)^2 (0.97)^{122-2}]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%202%20%29%20%3D%20%5B%28%5E%7B122%7D_%7B0%7D%29%280.03%29%5E0%20%280.97%29%5E%7B122-0%7D%2B%28%5E%7B122%7D_%7B1%7D%29%280.03%29%5E1%20%20%280.97%29%5E%7B122-1%7D%2B%28%5E%7B122%7D_%7B2%7D%29%280.03%29%5E2%20%280.97%29%5E%7B122-2%7D%5D)
![P(X \leq 2 ) = [\dfrac{122!}{0!(122-0)! } \times 1 \times (0.97)^{122}+\dfrac{122!}{1!(122-1)! } \times (0.03) (0.97)^{121}+\dfrac{122!}{2!(122-2)! } \times 9 \times 10^{-4} \times (0.97)^{120}]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%202%20%29%20%3D%20%5B%5Cdfrac%7B122%21%7D%7B0%21%28122-0%29%21%20%7D%20%5Ctimes%201%20%5Ctimes%20%20%280.97%29%5E%7B122%7D%2B%5Cdfrac%7B122%21%7D%7B1%21%28122-1%29%21%20%7D%20%5Ctimes%20%280.03%29%20%20%280.97%29%5E%7B121%7D%2B%5Cdfrac%7B122%21%7D%7B2%21%28122-2%29%21%20%7D%20%5Ctimes%209%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctimes%20%280.97%29%5E%7B120%7D%5D)
![P(X \leq 2 ) = [(1 \times 1 \times 0.02433 )+(122 \times (0.03) \times 0.025083)+(7381 \times 9 \times 10^{-4} \times 0.02586)]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%202%20%29%20%3D%20%5B%281%20%5Ctimes%20%201%20%5Ctimes%20%200.02433%20%29%2B%28122%20%5Ctimes%20%280.03%29%20%20%5Ctimes%200.025083%29%2B%287381%20%5Ctimes%209%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctimes%200.02586%29%5D)

(c) If the manufacturer stocks 125 components, what is the probability that the 120 orders can be filled without reordering components?
![P(X \leq 5 ) = [ P(X=0) + P(X =1) + P(X = 2) +P(X = 3)+P(X = 4)+ P(X = 5) ]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%205%20%29%20%3D%20%5B%20P%28X%3D0%29%20%2B%20P%28X%20%3D1%29%20%2B%20P%28X%20%3D%202%29%20%20%2BP%28X%20%3D%203%29%2BP%28X%20%3D%204%29%2B%20P%28X%20%3D%205%29%20%20%20%20%5D)
![P(X \leq 5 ) = [(^{122}_{0})(0.03)^0 (0.97)^{122-0}+(^{122}_{1})(0.03)^1 (0.97)^{122-1}+(^{122}_{2})(0.03)^2 (0.97)^{122-2} + (^{122}_{3})(0.03)^3 (0.97)^{122-3} + (^{122}_{4})(0.03)^4 (0.97)^{122-4}+ (^{122}_{5})(0.03)^5 (0.97)^{122-5}]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%205%20%29%20%3D%20%5B%28%5E%7B122%7D_%7B0%7D%29%280.03%29%5E0%20%280.97%29%5E%7B122-0%7D%2B%28%5E%7B122%7D_%7B1%7D%29%280.03%29%5E1%20%20%280.97%29%5E%7B122-1%7D%2B%28%5E%7B122%7D_%7B2%7D%29%280.03%29%5E2%20%280.97%29%5E%7B122-2%7D%20%2B%20%28%5E%7B122%7D_%7B3%7D%29%280.03%29%5E3%20%280.97%29%5E%7B122-3%7D%20%2B%20%28%5E%7B122%7D_%7B4%7D%29%280.03%29%5E4%20%280.97%29%5E%7B122-4%7D%2B%20%28%5E%7B122%7D_%7B5%7D%29%280.03%29%5E5%20%280.97%29%5E%7B122-5%7D%5D)
![P(X \leq 5 ) = [\dfrac{122!}{0!(122-0)! } \times 1 \times (0.97)^{122}+\dfrac{122!}{1!(122-1)! } \times (0.03) (0.97)^{121}+\dfrac{122!}{2!(122-2)! } \times 9 \times 10^{-4} \times (0.97)^{120} + \dfrac{122!}{3!(122-3)! }*(0.03)^3(0.97)^{122-3)}+ \dfrac{122!}{4!(122-4)! }*(0.03)^4(0.97)^{122-4)} +\dfrac{122!}{5!(122-5)! } *(0.03)^5(0.97)^{122-5)}]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%205%20%29%20%3D%20%5B%5Cdfrac%7B122%21%7D%7B0%21%28122-0%29%21%20%7D%20%5Ctimes%201%20%5Ctimes%20%20%280.97%29%5E%7B122%7D%2B%5Cdfrac%7B122%21%7D%7B1%21%28122-1%29%21%20%7D%20%5Ctimes%20%280.03%29%20%20%280.97%29%5E%7B121%7D%2B%5Cdfrac%7B122%21%7D%7B2%21%28122-2%29%21%20%7D%20%5Ctimes%209%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctimes%20%280.97%29%5E%7B120%7D%20%2B%20%5Cdfrac%7B122%21%7D%7B3%21%28122-3%29%21%20%7D%2A%280.03%29%5E3%280.97%29%5E%7B122-3%29%7D%2B%20%5Cdfrac%7B122%21%7D%7B4%21%28122-4%29%21%20%7D%2A%280.03%29%5E4%280.97%29%5E%7B122-4%29%7D%20%2B%5Cdfrac%7B122%21%7D%7B5%21%28122-5%29%21%20%7D%20%2A%280.03%29%5E5%280.97%29%5E%7B122-5%29%7D%5D)

A. 2 + (1/2)* 1 = 2.5
B. 2 + (1/2)*2 = 3
C. 2 + (1/2)*3 = 3.5
D. s = 2 + (1/2)*m
2. 8 = 2 + (1/2)*m
6 = (1/2)m
m = 12