Answer:
B. ![\frac{b}{2a^{2}c^3}\sqrt[3]{15b}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7B2a%5E%7B2%7Dc%5E3%7D%5Csqrt%5B3%5D%7B15b%7D)
Step-by-step explanation:
Given:
The expression to simplify is given as:
![\sqrt[3]{\frac{75a^7b^4}{40a^{13}c^9}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B75a%5E7b%5E4%7D%7B40a%5E%7B13%7Dc%5E9%7D%7D)
Use the exponent property 

Use the exponent property 


Reducing
to simplest form, we get:

Therefore, expression becomes:
![\sqrt[3]{\frac{15(a^{-2})^3\times b\times b^3}{2^3(c^3)^3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B15%28a%5E%7B-2%7D%29%5E3%5Ctimes%20b%5Ctimes%20b%5E3%7D%7B2%5E3%28c%5E3%29%5E3%7D%7D)
Use the cubic root property:
. Thus, the expression becomes:
![\frac{a^{-2}b}{2c^3}\sqrt[3]{15b}](https://tex.z-dn.net/?f=%5Cfrac%7Ba%5E%7B-2%7Db%7D%7B2c%5E3%7D%5Csqrt%5B3%5D%7B15b%7D)
Using the exponent property 

So, the final expression is:
![\frac{b}{2a^{2}c^3}\sqrt[3]{15b}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7B2a%5E%7B2%7Dc%5E3%7D%5Csqrt%5B3%5D%7B15b%7D)
Therefore, the correct option is option B.