Length: 2w + 59
width: w
diagonal: (2w + 59) + 2 = 2w + 61
Length² + width² = diagonal²
(2w + 59)² + (w)² = (2w + 61)²
(4w² + 118w + 3481) + w² = 4w² + 122w + 3721
5w² + 118w + 3481 = 4w² + 122w + 3721
w² + 118w + 3481 = 122w + 3721
w² - 4w + 3481 = 3721
w² - 4w - 240 = 0
a = 1, b = -4, c = -240
w = ![[-(b) +/- \sqrt{(b)^{2} - 4(a)(c) }]/2(a)](https://tex.z-dn.net/?f=%5B-%28b%29%20%2B%2F-%20%5Csqrt%7B%28b%29%5E%7B2%7D%20%20-%204%28a%29%28c%29%20%7D%5D%2F2%28a%29)
= ![[-(-4) +/- \sqrt{(-4)^{2} - 4(1)(-240) }]/2(1)](https://tex.z-dn.net/?f=%5B-%28-4%29%20%2B%2F-%20%5Csqrt%7B%28-4%29%5E%7B2%7D%20%20-%204%281%29%28-240%29%20%7D%5D%2F2%281%29)
=
=
=
=
since width cannot be negative, disregard 1 - 2√61
w = 1 + 2√61 ≈ 16.62
Length: 2w + 59 = 2(1 + 2√61) + 59 = 2 + 4√61 + 59 = 61 + 4√61 ≈ 92.24
Answer: width = 16.62 in, length = 92.24 in
Answer:
x = 1, y = 10
Step-by-step explanation:
y = -5x + 15 --- Equation 1
2x + y = 12 --- Equation 2
Substitute y = -5x + 15 into Equation 2:
2x + y = 12
2x - 5x + 15 = 12
Evaluate like terms.
15 - 3x = 12
Isolate -3x.
-3x = 12 - 15
Evaluate like terms.
-3x = -3
Find x.
x = -3 ÷ -3
x = 1
Substitute x = 1 into Equation 2:
2x + y = 12
2(1) + y = 12
2 + y = 12
Isolate y.
y = 12 - 2
y = 10
10x^3-8x^2-12x^2(x)
10x^3-8x^2-12x^3
-2x^3-8x^2
=-2x^2(x+4)
Answer:
Step-by-step explanation:
Me no hablas Inglish sorry pal