Answer:
There is a need to transform the accumulation of acetyl-CoA into the ketone bodies, as one knows that acetyl-CoA is both labile and possess an enormous amount of energy. Hence, acetyl-CoA due to its unstable characteristic is not ideal for circulation within the tissues, and at the same time, the compound acetyl-CoA does not possess the tendency to pass through the cell membrane.
Due to these reasons, the conversion of acetyl-CoA into the ketone bodies is done, the ketone bodies also act as an alternative source of energy. The ketone bodies work as water-soluble correspondents of fatty acids. The production of ketone bodies generally takes place within the liver cells' mitochondrial matrix. The three forms of ketone bodies are beta-hydroxybutyrate, acetoacetate, and acetone.
The production of ketone bodies by the liver cells helps the cells of the brain at the time of starvation, as the brain cannot use fatty acids as an energy source, as the fatty acids cannot pass through the blood-brain barrier.
Answer:
Totipotential.
Explanation:
There are different cell potencies. A <u>totipotent</u> cell is a stem cell that can divide itself and <u>differentiate in any cell </u>that the organism needs. That is to say, endodermal cells, ectodermal cells, mesodermal cells, or extra-embryonic tissues. As cells differentiate themselves, they can gradually lose their potential. The cell's category that follows is pluripotent cells. These are stem cells that can only differentiate into ectoderm cells, endoderm cells, or mesoderm cells. Then we have multipotent cells, which differentiate into tissue cells. The next category is oligopotent cells. They give a limited number of specific cells, and lastly unipotent cells, only differentiate in one type of cell.
The answer your looking for is the insula. Hope this helps.