Answer:
0.0326 = 3.26% probability that a randomly selected thermometer reads between −2.23 and −1.69.
The sketch is drawn at the end.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 0°C and a standard deviation of 1.00°C.
This means that 
Find the probability that a randomly selected thermometer reads between −2.23 and −1.69
This is the p-value of Z when X = -1.69 subtracted by the p-value of Z when X = -2.23.
X = -1.69



has a p-value of 0.0455
X = -2.23



has a p-value of 0.0129
0.0455 - 0.0129 = 0.0326
0.0326 = 3.26% probability that a randomly selected thermometer reads between −2.23 and −1.69.
Sketch:
The correct answer among all the other choices is "All real numbers." Given the arithmetic sequence an = 2 − 5(n + 1), the domain for n could be all real numbers. <span>Thank you for posting your question. I hope this answer helped you. Let me know if you need more help. </span>
The probability as a fraction is 1/7, which in decimal form is roughly 0.142857
To get this answer, you divide 2/14 = 1/17 = 0.142857...
The 2 refers to the number of pages you want to have (page 2; page 7). The 14 is the total number of pages you're working with.