Answer:
24 and 48
Today, the son is 24 years old, and the father is 48 years old.
Step-by-step explanation:
(x - 10) + (2x - 10) = 52
3x + 20 = 52
3x = 72
x = 24
The father is 2 times his son's age.
2x
= 2(24)
= 48
So, the son is 24 and the father is 48.
10 years ago, son was 14 and father was 38, if added, this adds up to 52, so we know our calculations are correct.
Answer:
Slope <em>m</em> = 3
General Formulas and Concepts:
<u>Algebra I</u>
Slope-Intercept Form: y = mx + b
- m - slope
- b - y-intercept
Step-by-step explanation:
<u>Step 1: Define</u>
y = -1 + 3x
<u>Step 2: Rewrite</u>
<em>Rearrange</em>
y = 3x - 1
<u>Step 3: Break Function</u>
<em>Identify parts</em>
Slope <em>m</em> = 3
y-intercept <em>b</em> = -1
Answer:
x = 21
Step-by-step explanation:
Givens:
Every triangle's interior angles add up to 180°
The triangle has a right angle.
The triangle is isosceles (two equal sides and two equal angles)
Let's make an equation with the information we have already.
2 × (2x + 3) + 90 = 180
4x + 6 + 90 = 180
4x + 96 = 180
4x = 84
x = 21
Answer:
0
Step-by-step explanation:
Find the following limit:
lim_(x->∞) 3^(-x) n
Applying the quotient rule, write lim_(x->∞) n 3^(-x) as (lim_(x->∞) n)/(lim_(x->∞) 3^x):
n/(lim_(x->∞) 3^x)
Using the fact that 3^x is a continuous function of x, write lim_(x->∞) 3^x as 3^(lim_(x->∞) x):
n/3^(lim_(x->∞) x)
lim_(x->∞) x = ∞:
n/3^∞
n/3^∞ = 0:
Answer: 0