Answer:
x = 30 and y = -34
Step-by-step explanation:
Given the following functions
(1/4)^(x+y) = 256... 1
log₄(x-y) = 3.... 2
From equation 2;
x-y = 4³
x-y = 64
x = 64 + y ... 3
Substitutw 3 into 1
From 1:
(1/4)^(x+y) = 256
(1/4)^(64+y+y) = 256
(1/4)^(64+2y) = 256
Take log₄ of both sides
64+2y log₄ (1/4) = log₄256
-(64+2y) = 4log₄4
-(64+2y) = 4
64+2y = -4
2y = -4 - 64
2y = -68
y = -34
Since
x = 64 + y .
x = 64 - 34
x = 30
Hence x = 30 and y = -34
Answer:
B
Step-by-step explanation:
5x - 1 = x =4
A parallel line has the same slope as the original line. So in this case the slope of the line is also 3/4. Now how do we know if it intersects the point? We need to adjust the y intercept.
Currently, we know the equation of the line is y= 3/4 x + b, where b is the thing we are looking for. We also have a point, which supplies the x and y. Plug that in and solve for b
-2 = (3/4)*(12) + b
You'll get b= -11
So the equation of the parallel line intersecting the point given is y= 3/4x -11.
I am assuming that the slope is 3/4 based on the way you formatted the original equation, but it's the same steps if the slope is different.
<span>-2x^2-x+7=0
Variable with the highest degree's (exponent) constant, -2 is a, next variable's constant, -1 is b, the constant or number without a variable, 7 is c
using substitution put the numbers into the formula
</span>(-b±√(b^(2)-4ac))/(a^(2))
(-(-1)±√((-1)^(2)-4(-2)(7))/((-2)^(2)) simplify
(1±√(1+56))/4
1±√(57)/4 is your answer
Answer:
0
Step-by-step explanation:
Anything times 0 is 0.