1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maksim [4K]
2 years ago
11

Question content area top

Mathematics
1 answer:
BigorU [14]2 years ago
3 0

The volume of the slice is 40 in³. The volume of the remaining cake would be 197.014 in³.

<h3>What is a regular hexagon?</h3>

A regular hexagon can be defined as a closed shape consisting of six equal sides and six equal angles.

Here we have two regular hexagons

one top small hexagon cake with a side of length = 3 in, height = 3 in

One big hexagon cake, side of length = 4 in, Height = 4 in

A slice cut such that it removes a side segment is equivalent to an equilateral triangle with a side

length = length of hexagon side

The length of the side of the removed equilateral triangle side

Top small cake slice triangle side = 3 in.

Area of surface of small slice = 1/2 x b x h = 1/2 x 3 x 3 x sin 60

                                                = 9√3/ 4

The volume of a small slice  

=  Area of surface small slice × Height of small cake

= 9√3/ 4  x 3

= 11. 69

Big cake slice triangle side = 4 in.

Area of the surface of big slice = 1/2 x 4 x 4 x sin 60

                                                    = 4√3

The volume of big slice =  Area of the surface of big slice × Height of big slice

= 16√3

= 28

The total volume of slice = Volume of small slice + Volume of big slice

Total volume of slice = 12 in³ +28 in³ = 40 in³

For the small cake,

the remaining volume = 5 x 11.69 = 58.45

For the big cake

the remaining volume = 5 x 27.71 = 138.56

Total volume remaining cake

= 58.45 in³ + 138.56 in³ = 197.014 in³

a = Length of side

h = Height of hexagon

The volume of each slice is,

= a^2 x h x √3/4

For the small cake, we have

a = 3 in.

h = 3 in.

The volume of small slice = a^2 x h x √3/4

                                   = 9 x 3 x √3/4

                                   = 27√3/4

For the big cake, we have

a = 4 in.

h = 4 in.

Volume of big slice =  a^2 x h x √3/4

                                = 16 √3

The total volume of slice = Volume of small slice + Volume of a big slice

Total volume of slice = 27√3/4 + 16 √3

The total volume of the slice = 39404 in³.

Learn more about hexagon;

brainly.com/question/16025389

#SPJ1

You might be interested in
Cos4theta+cos2theta/ cos4theta-cos2theta= _____
vovangra [49]

\bf \textit{Sum to Product Identities} \\\\ cos(\alpha)+cos(\beta)=2cos\left(\cfrac{\alpha+\beta}{2}\right)cos\left(\cfrac{\alpha-\beta}{2}\right) \\\\\\ cos(\alpha)-cos(\beta)=-2sin\left(\cfrac{\alpha+\beta}{2}\right)sin\left(\cfrac{\alpha-\beta}{2}\right) \\\\[-0.35em] \rule{34em}{0.25pt}

\bf \cfrac{cos(4\theta )+cos(2\theta )}{cos(4\theta )-cos(2\theta )}\implies \cfrac{2cos\left( \frac{4\theta +2\theta }{2} \right)cos\left( \frac{4\theta -2\theta }{2} \right)}{-2sin\left( \frac{4\theta +2\theta }{2} \right)sin\left( \frac{4\theta -2\theta }{2} \right)} \implies \cfrac{cos\left( \frac{6\theta }{2} \right)cos\left( \frac{2\theta }{2} \right)}{-sin\left( \frac{6\theta }{2} \right)sin\left( \frac{2\theta }{2} \right)}

\bf \cfrac{cos(3\theta )cos(\theta )}{-sin(3\theta )sin(\theta )}\implies -\cfrac{cos(3\theta )}{sin(3\theta )}\cdot \cfrac{cos(\theta )}{sin(\theta )}\implies -cot(3\theta )cot(\theta )

8 0
3 years ago
sam and james win £500 in a competition. they share the money 3:7. sam gives 35% of the money he wins to his brother, harry. how
Black_prince [1.1K]
Sam gets (500/10)*3=150<span>£
harry gets (150/100)*35= 52.5</span>£
6 0
3 years ago
Anyone wanna be friends​
boyakko [2]

Answer:

Yes :)

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Translate the phrase to an algebraic expression. State what each variable represents.
mezya [45]
X+ 4? idk I don't really understand the question...
4 0
3 years ago
If a tellemarketer made 200 phone calls and 35 customers signed up what is the relative frequency of getting a customer and not
Snezhnost [94]

Answer:

82.5% and 17.5%

Step-by-step explanation:

The telemarketer made 200 phone calls and only 35 people signed up. Therefore, we need to find the amount of people who didnt.

200 - 35 = 165

165 people did not sign up.

This meants that the frequency of getting a customer is 35/200 and not is 165/200. In percentages,

The relative frequency of not getting a customer is 82.5%

The relative frequency of getting a customer is 17.5%

6 0
3 years ago
Other questions:
  • Mario travels 180 miles in 2.5 hours. If Mario travels at the same rate, how far can Mario travel in 5 hours
    11·1 answer
  • Drag each figure to show if it is similar to the figure shown or why it is not similar.
    8·1 answer
  • X-y=4. work out the value of 3(x-y)
    14·2 answers
  • I am really confused on questions 1-5 can you please help?????
    8·1 answer
  • Kira buys candy that costs $5 per pound.she will spend more than $45 on candy. What are the possible numbers of pounds she will
    13·1 answer
  • 16/ 1/2 - |-4| = 8+3
    10·1 answer
  • I DONT KNOW HELP PLEASE !!!
    11·1 answer
  • You and a friend both leave the same restaurant to drive home. You are heading directly west at 30 miles per hour and he or she
    8·1 answer
  • 3. Change the following to mixed numbers
    13·1 answer
  • Luis wants to buy a skateboard that usually sells for $79.78. All merchandise is discounted by 12%. What is the total cost of th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!