Answer:
do we do the x veriable as the numerator? if so it's not a or c if not vice versa
Step-by-step explanation:
Add 3x and 2x together to get 5x. Then do 88+108-6 and you get 190. To find x now all you have to do is use 5x+190=360 to get x.
360 -190= 170 now you have 5x=170 divide 170/5 and that will give u the value of x.
3 over 2 and 3 over 4 (1.5 and .75)
X^2-9=-5
x^2-4=0
(x+2)(x-2)=0 [Difference of Two Squares]
x=-2,2
-2 is the smaller root.
<span>Point G cannot be a centroid because JG is shorter than GE.
Without the diagram, this problem is rather difficult. But given what a centroid is for a triangle, let's see what statements make or do not make sense. Assumptions made for this problem.
G is a point within the interior of the triangle HJK.
E is a point somewhere on the perimeter of triangle HJK and that a line passing from that point to a vertex of triangle HJK will have point G somewhere on it.
Point G cannot be a centroid because JG does not equal GE.
* If G was a centroid, then JG would not be equal to GE because if that were the case, you could construct a circle that's both tangent to all sides of the triangle while simultaneously passing through a vertex of the triangle. That's impossible, so this can't be the correct choice.
Point G cannot be a centroid because JG is shorter than GE.
* This statement would be true. So this is a good possibility as the correct answer assuming the above assumptions are correct.
Point G can be a centroid because GE and JG are in the ratio 2:1.
* There's no fixed relationship between the lengths of the radius of a circle who's center is at the centroid and the distance from that center to a vertex of the triangle. And in fact, it's highly likely that such a ratio will not even be constant within the same triangle because it will only be constant of the triangle is an equilateral triangle. So this statement is nonsense and therefore a bad choice.
Point G can be a centroid because JG + GE = JE.
* Assuming that the assumption about point E above is correct, then this relationship would hold true for ANY point E on the side of the triangle that's opposite to vertex J. And only 1 of the infinite possible points is correct for the line JE to pass through the centroid. So this is also an incorrect choice.
Since of the 4 available choices, all but one are complete and total nonsense when speaking about a centroid in a triangle, that one has to be the correct answer. So "Point G cannot be a centroid because JG is shorter than GE."</span>