Answer: ![sds\\ \\ x^{2} \geq \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \geq \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \pi \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right. x^{2} \lim_{n \to \infty} a_n \pi \neq \sqrt{x} \neq](https://tex.z-dn.net/?f=sds%5C%5C%20%5C%5C%20x%5E%7B2%7D%20%5Cgeq%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cgeq%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cpi%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cpi%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Cneq)
Step-by-step explanation:i need the think points
Answer:
where is your figure
Step-by-step explanation:
<u>Given</u>:
The given triangle is a right triangle.
The length of the hypotenuse is 31 units.
The length of the leg is 23 units.
One of the angle is x.
We need to determine the value of x.
<u>Value of x:</u>
The value of x can be determined using the trigonometric ratio.
Thus, we have;

Substituting
, the side opposite to the angle x measures 23 units and the hypotenuse is 31.
Thus, we have;

Dividing, we get;

Taking
on both sides of the equation, we get;


Rounding off to the nearest whole integer, we get;

Thus, the value of x is 48°
Hence, Option c is the correct answer.
The answer would actually be A because if you make 3 1/4 a mixed number you would get 13/4 which equals 3.25. Now divide 3.25 by 4 because you will dividing these pizzas to 4 people. This gives me 0.8125. Then I would multiply 1/4 to 3.3125 which gives me 0.203125 and when you make this to an improper fraction it will come out to be 13/64 which is choice A. I hope this helps you! I am also sorry for what happened yesterday.
Answer:
si
Step-by-step explanation: