6
4
4
12
3
4
I can't read the last one, sorry.
Answer:
The geometric mean of the measures of the line segments AD and DC is 60/13
Step-by-step explanation:
Geometric mean: BD² = AD×DC
BD = √(AD×DC)
hypotenuse/leg = leg/part
ΔADB: AC/12 = 12/AD
AC×AD = 12×12 = 144
AD = 144/AC
ΔBDC: AC/5 = 5/DC
AC×DC = 5×5 = 25
DC = 25/AC
BD = √[(144/AC)(25/AC)]
BD = (12×5)/AC
BD= 60/AC
Apply Pythagoras theorem in ΔABC
AC² = 12² + 5²
AC² = 144+ 25 = 169
AC = √169 = 13
BD = 60/13
The geometric mean of the measures of the line segments AD and DC is BD = 60/13
Answer: 0.16
Step-by-step explanation:
Given that the run times provided are normally distributed ;
Mean(x) of distribution = 3 hours 50 minutes
Standard deviation(s) = 30 minutes
The probability that a randomly selected runner has a time less than or equal to 3 hours 20 minutes
3 hours 20 minutes = (3 hrs 50 mins - 30 mins):
This is equivalent to :
[mean(x) - 1 standard deviation]
z 1 standard deviation within the mean = 0.84
z, 1 standard deviation outside the mean equals:
P(1 - z value , 1standard deviation within the mean)
1 - 0.8413 = 0.1587
= 0.16
Answer:
kurt
Step-by-step explanation:
Answer:
Step-by-step explanation: