1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikki [24]
3 years ago
5

Find the value of the variable y, where the sum of the fractions 6/(y+1) and y/(y-2) is equal to their product.

Mathematics
2 answers:
Blizzard [7]3 years ago
6 0

Answer:

The answer is

y = 3

y =  - 4

Step-by-step explanation:

We must find a solution where

\frac{6}{y + 1}  +  \frac{y}{y - 2}  =  \frac{6}{y + 1}  \times  \frac{y}{y - 2}

Consider the Left Side:

First, to add fraction multiply each fraction on the left by it corresponding denomiator and we should get

\frac{6}{y + 1}  \times  \frac{y - 2}{y - 2}  +  \frac{y}{y - 2}  \times  \frac{y + 1}{y + 1}

Which equals

\frac{6y - 12}{(y -2) (y + 1)}  +  \frac{ {y}^{2} + y }{(y - 2)(y + 1)}

Add the fractions

\frac{y {}^{2} + 7y - 12 }{(y - 2)(y + 1)}  =  \frac{6}{y + 1}  \times  \frac{y}{y - 2}

Simplify the right side by multiplying the fraction

\frac{6y}{(y  + 1)(y + 2)}

Set both fractions equal to each other

\frac{6y}{(y + 1)(y - 2)}  =  \frac{ {y}^{2} + 7y - 12}{(y + 1)(y - 2)}

Since the denomiator are equal, we must set the numerator equal to each other

6y =  {y}^{2}  + 7y - 12

=  {y}^{2}  + y - 12

(y  + 4)(y - 3)

y =  - 4

y = 3

hoa [83]3 years ago
3 0

Answer:

Step-by-step explanation:

\frac{6}{y+1}+\frac{y}{y-2}=\frac{6}{y+1} \times \frac{y}{y-2} \\multiply ~by~(y+1)(y-2)\\6(y-2)+y(y+1)=6y\\6y-12+y^2+y=6y\\y^2+y-12=0\\y^2+4y-3y-12=0\\y(y+4)-3(y+4)=0\\(y+4)(y-3)=0\\y=-4,3

You might be interested in
Match each vector operation with its resultant vector expressed as a linear combination of the unit vectors i and j.
Cloud [144]

Answer:

3u - 2v + w = 69i + 19j.

8u - 6v = 184i + 60j.

7v - 4w = -128i + 62j.

u - 5w = -9i + 37j.

Step-by-step explanation:

Note that there are multiple ways to denote a vector. For example, vector u can be written either in bold typeface "u" or with an arrow above it \vec{u}. This explanation uses both representations.

\displaystyle \vec{u} = \langle 11, 12\rangle =\left(\begin{array}{c}11 \\12\end{array}\right).

\displaystyle \vec{v} = \langle -16, 6\rangle= \left(\begin{array}{c}-16 \\6\end{array}\right).

\displaystyle \vec{w} = \langle 4, -5\rangle=\left(\begin{array}{c}4 \\-5\end{array}\right).

There are two components in each of the three vectors. For example, in vector u, the first component is 11 and the second is 12. When multiplying a vector with a constant, multiply each component by the constant. For example,

3\;\vec{v} = 3\;\left(\begin{array}{c}11 \\12\end{array}\right) = \left(\begin{array}{c}3\times 11 \\3 \times 12\end{array}\right) = \left(\begin{array}{c}33 \\36\end{array}\right).

So is the case when the constant is negative:

-2\;\vec{v} = (-2)\; \left(\begin{array}{c}-16 \\6\end{array}\right) =\left(\begin{array}{c}(-2) \times (-16) \\(-2)\times(-6)\end{array}\right) = \left(\begin{array}{c}32 \\12\end{array}\right).

When adding two vectors, add the corresponding components (this phrase comes from Wolfram Mathworld) of each vector. In other words, add the number on the same row to each other. For example, when adding 3u to (-2)v,

3\;\vec{u} + (-2)\;\vec{v} = \left(\begin{array}{c}33 \\36\end{array}\right) + \left(\begin{array}{c}32 \\12\end{array}\right) = \left(\begin{array}{c}33 + 32 \\36+12\end{array}\right) = \left(\begin{array}{c}65\\48\end{array}\right).

Apply the two rules for the four vector operations.

<h3>1.</h3>

\displaystyle \begin{aligned}3\;\vec{u} - 2\;\vec{v} + \vec{w} &= 3\;\left(\begin{array}{c}11 \\12\end{array}\right) + (-2)\;\left(\begin{array}{c}-16 \\6\end{array}\right) + \left(\begin{array}{c}4 \\-5\end{array}\right)\\&= \left(\begin{array}{c}3\times 11 + (-2)\times (-16) + 4\\ 3\times 12 + (-2)\times 6 + (-5) \end{array}\right)\\&=\left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle\end{aligned}

Rewrite this vector as a linear combination of two unit vectors. The first component 69 will be the coefficient in front of the first unit vector, i. The second component 19 will be the coefficient in front of the second unit vector, j.

\displaystyle \left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle = 69\;\vec{i} + 19\;\vec{j}.

<h3>2.</h3>

\displaystyle \begin{aligned}8\;\vec{u} - 6\;\vec{v} &= 8\;\left(\begin{array}{c}11\\12\end{array}\right) + (-6) \;\left(\begin{array}{c}-16\\6\end{array}\right)\\&=\left(\begin{array}{c}88+96\\96 - 36\end{array}\right)\\&= \left(\begin{array}{c}184\\60\end{array}\right)= \langle 184, 60\rangle\\&=184\;\vec{i} + 60\;\vec{j} \end{aligned}.

<h3>3.</h3>

\displaystyle \begin{aligned}7\;\vec{v} - 4\;\vec{w} &= 7\;\left(\begin{array}{c}-16\\6\end{array}\right) + (-4) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}-112 - 16\\42+20\end{array}\right)\\&= \left(\begin{array}{c}-128\\62\end{array}\right)= \langle -128, 62\rangle\\&=-128\;\vec{i} + 62\;\vec{j} \end{aligned}.

<h3>4.</h3>

\displaystyle \begin{aligned}\;\vec{u} - 5\;\vec{w} &= \left(\begin{array}{c}11\\12\end{array}\right) + (-5) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}11-20\\12+25\end{array}\right)\\&= \left(\begin{array}{c}-9\\37\end{array}\right)= \langle -9, 37\rangle\\&=-9\;\vec{i} + 37\;\vec{j} \end{aligned}.

7 0
3 years ago
Cassandra shared her post with 3 friends, who each shared it with 3 more friends. They continued sharing at the same rate.
uranmaximum [27]
F(3) = 3(3)
f(3) 3f
f(10) 10
5 0
3 years ago
Read 2 more answers
What is the slope of the line that passes through the points (−6,8) and (−9,7)? Write your answer in simplest form.
In-s [12.5K]

Answer:

Slope = \frac{1}{3}

Please Mark Brainliest If This Helped!

3 0
2 years ago
Jayson said, "I am thinking of two fractions that when added have a sum of 1." Which fractions could Jayson have been thinking a
viva [34]

Answer:

3/6 and 3/6

thanks mate

5 0
3 years ago
Read 2 more answers
Three​ painters, beth,​ bill, and​ edie, working​ together, can paint the exterior of a home in 1212 hours. bill and edie togeth
Viefleur [7K]
Let be be Beth, bi be Bill, and e be edie. Then:
1/be + 1/bi +1/e=1/12
1/bi + 1/e=1/15
10/be +10/bi +10/e+5/be+5/bi=1
Solve for be, bi, and e
☺☺☺☺
5 0
3 years ago
Other questions:
  • What percent of 150 is 162
    9·1 answer
  • Can someone please help me and explain?
    12·1 answer
  • 55 percent of 48 is the same as 60 percent of what number? I WILL AWARD BRAINLEIST
    5·1 answer
  • What is 40 = 0.5r <br>solve and write Multiplication equations
    6·2 answers
  • 9m + 11 - 8m - 6 + 5
    5·1 answer
  • Mr Kelly has a big pot of chili. He splits it into 9 bowls that each hold 1 1/8 cups. After filling those bowls, there is 1/2 cu
    5·1 answer
  • Answer all three questions
    14·1 answer
  • 14 more than 5 times a number is equal to 20. find the number
    7·1 answer
  • Please help me thank you if u do
    14·1 answer
  • How do you solve the picture?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!